[1]王晓林,苏松志,刘晓颖,等.一种基于级联神经网络的飞机检测方法[J].智能系统学报,2020,15(4):697-704.[doi:10.11992/tis.201908028]
 WANG Xiaolin,SU Songzhi,LIU Xiaoying,et al.Cascade convolutional neural networks for airplane detection[J].CAAI Transactions on Intelligent Systems,2020,15(4):697-704.[doi:10.11992/tis.201908028]
点击复制

一种基于级联神经网络的飞机检测方法

参考文献/References:
[1] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks [C]//Proceedings of the 28th International Conference on Neural Information Processing System. Montreal, Canada, 2015: 91-99.
[2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedi ngs of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2015: 779-788.
[3] REDMON J, FARHADI A. YOLO9000: better, faster, strong-er[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA. 2017: 6517-6525.
[4] REDMON J, FARHADI A. YOLOv3: an incremental im-provement[J]. arXiv preprint arXiv: 1804.02767, 2018.
[5] LIU W, ANGUELOY D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Amsterdam, The Netherlands, 2015: 21-37.
[6] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017: 2999-3007.
[7] LIN T Y, MAIRE M, MAIRE M, et al. Microsoft COCO: common objects in context[C]// Proceedings of the 14th European Conference on Computer Vision. Zurich, Switzerland, 2014: 740-755.
[8] EVERINGHAM M, GOOL L J V. The PASCAL visual object classes challenge[J]. International journal of computer vision, 2010, 88(2): 303-338.
[9] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 886-893.
[10] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110.
[11] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.
[12] UIJLINGS J, SANDE K, GEVERS T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104(2): 154-171.
[13] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014: 580-587.
[14] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, 2015: 1440-1448.
[15] AN Z, SHI Z, TENG X, et al. An automated airplane detection system for large panchromatic image with high spatial resolution[J]. Optik, 2014, 125(12): 2768-2775.
[16] LI W, XIANG S, WANG H, et al. Robust airplane detection in satellite images[C]//Proceedings of International Conference on Image Processing. Brussels, Belgium, 2011: 2821-2824.
[17] HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal[C]// Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017: 4165-4173.
[18] LIU L, PAN Z, LEI B. Learning a rotation invariant detector with rotatable bounding box[J]. arXiv preprint arXiv: 1711.09405, 2017.
[19] YANG Y, ZHUANG Y, BI F, et al. M-FCN: effective fully convolutional network-based airplane detection Frame-work[J]. IEEE geoscience and remoting sensing letters, 2017, 14(8): 1293-1297.
[20] CHENG G, HAN J, ZHOU P, et al. Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J]. ISPRS journal of photogrammetry and remote sensing, 2014, 98(1): 119-132.
[21] CHENG G, HAN J. A Survey on object detection in optical remote sensing images[J]. ISPRS Journal of photogrammetry and remote sensing, 2016, 117: 11-28.
[22] CHENG G, ZHOU P, HAN J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images[J]. IEEE transactions on geoscience and remote sensing, 2016, 54(12): 7405-7415.
[23] XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA, 2018: 3974-3983.
[24] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional net-works[J]. IEEE signal processing letters, 2016, 23(10): 1499-1503.
[25] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy, 2017: 2980-2988.
相似文献/References:
[1]刘富,于鹏,刘坤.采用独立分量分析Zernike矩的遥感图像飞机目标识别[J].智能系统学报,2011,6(1):51.
 LIU Fu,YU Peng,LIU Kun.Research concerning aircraft recognition of remote sensing images based on ICA Zernike invariant moments[J].CAAI Transactions on Intelligent Systems,2011,6():51.
[2]龙海侠,吴淑雷,吕雁.基于多样性变异的QPSO算法的遥感图像分类[J].智能系统学报,2015,10(6):938.[doi:10.11992/tis.201507045]
 LONG Haixia,WU Shulei,LYU Yan.Classification of multispectral remote sensing image based on QPSO and diversity-mutation[J].CAAI Transactions on Intelligent Systems,2015,10():938.[doi:10.11992/tis.201507045]
[3]吴诗婳,吴一全,周建江.直线截距直方图城区遥感图像多阈值分割[J].智能系统学报,2018,13(2):227.[doi:10.11992/tis.201609012]
 WU Shihua,WU Yiquan,ZHOU Jianjiang.Multi-level thresholding for remote sensing image of urban area based on line intercept histogram[J].CAAI Transactions on Intelligent Systems,2018,13():227.[doi:10.11992/tis.201609012]
[4]李亚飞,董红斌.基于卷积神经网络的遥感图像分类研究[J].智能系统学报,2018,13(4):550.[doi:10.11992/tis.201706078]
 LI Yafei,DONG Hongbin.Classification of remote-sensing image based on convolutional neural network[J].CAAI Transactions on Intelligent Systems,2018,13():550.[doi:10.11992/tis.201706078]
[5]王昌安,田金文.生成对抗网络辅助学习的舰船目标精细识别[J].智能系统学报,2020,15(2):296.[doi:10.11992/tis.201901004]
 WANG Changan,TIAN Jinwen.Fine-grained inshore ship recognition assisted by deep-learning generative adversarial networks[J].CAAI Transactions on Intelligent Systems,2020,15():296.[doi:10.11992/tis.201901004]
[6]赵文清,康怿瑾,赵振兵,等.改进YOLOv5s的遥感图像目标检测[J].智能系统学报,2023,18(1):86.[doi:10.11992/tis.202203013]
 ZHAO Wenqing,KANG Yijin,ZHAO Zhenbing,et al.A remote sensing image object detection algorithm with improved YOLOv5s[J].CAAI Transactions on Intelligent Systems,2023,18():86.[doi:10.11992/tis.202203013]
[7]刘庆鑫,李霓,贾鹤鸣,等.改进䲟鱼优化算法和熵测度的图像多阈值分割[J].智能系统学报,2024,19(2):381.[doi:10.11992/tis.202205018]
 LIU Qingxin,LI Ni,JIA Heming,et al.An improved remora optimization algorithm for multilevel thresholding image segmentation using an entropy measure[J].CAAI Transactions on Intelligent Systems,2024,19():381.[doi:10.11992/tis.202205018]
[8]邵凯,王明政,王光宇.基于Transformer的多尺度遥感语义分割网络[J].智能系统学报,2024,19(4):920.[doi:10.11992/tis.202304026]
 SHAO Kai,WANG Mingzheng,WANG Guangyu.Transformer-based multiscale remote sensing semantic segmentation network[J].CAAI Transactions on Intelligent Systems,2024,19():920.[doi:10.11992/tis.202304026]

备注/Memo

收稿日期:2019-08-24。
基金项目:国家自然科学基金项目(61806172,41971424);厦门市海洋与渔业局海洋科技成果转化与产业化示范项目(18CZB033HJ11)
作者简介:王晓林,硕士研究生,主要研究方向为目标检测;苏松志,副教授,主要研究方向为计算机视觉、机器学习、人脸识别与行人检测。发表学术论文30余篇;李绍滋,教授,博士生导师,主要研究方向为计算机视觉、机器学习和数据挖掘。先后主持或参加多项国家863项目、国家自然科学基金项目、教育部博士点基金项目、省科技重点项目等多个项目的研究。发表学术论文300余篇
通讯作者:苏松志.E-mail:ssz@xmu.edu.cn

更新日期/Last Update: 2020-07-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com