[1]张旭,孙福振,方春.加权高效用因子的两阶段混合推荐算法[J].智能系统学报,2019,14(3):518-524.[doi:10.11992/tis.201710028]
ZHANG Xu,SUN Fuzhen,FANG Chun.Two-phase weighted high-utility factor-based hybrid recommendation algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(3):518-524.[doi:10.11992/tis.201710028]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第3期
页码:
518-524
栏目:
学术论文—机器学习
出版日期:
2019-05-05
- Title:
-
Two-phase weighted high-utility factor-based hybrid recommendation algorithm
- 作者:
-
张旭, 孙福振, 方春
-
山东理工大学 计算机科学与技术学院, 山东 淄博 255049
- Author(s):
-
ZHANG Xu, SUN Fuzhen, FANG Chun
-
College of Computer Science and Technology, Shandong University of Technology, Zibo 255049, China
-
- 关键词:
-
两阶段; 高效用因子; 靶向因子; 主题模型; 用户兴趣; 混合推荐; 用户效用; 评分倾向
- Keywords:
-
two phases; high-utility factor; targeted factor; topic model; user interest; hybrid recommendation; user utility; user rating tendency
- 分类号:
-
TP311
- DOI:
-
10.11992/tis.201710028
- 摘要:
-
传统协同过滤算法大多是围绕如何降低评分误差展开研究,未涉及用户评分过程。本文考虑到用户评分动机和用户本身评分倾向的情况,将用户评分过程分为用户评分和物品选择两个阶段,从预测用户兴趣概率和用户效用角度出发,采用潜在狄利克雷分布模型(LDA)挖掘出用户潜在高效用因子和物品被靶向概率因子,进而将两种因子加权融合作为第一阶段;第二阶段采用奇异值分解预测用户评分值并根据该评分值选择物品。综上,本文提出一种加权高效用因子的两阶段混合推荐算法(hybrid recommendation algorithm based on two-phase weighted high utility factor,Htp_Uf)。在MovieLens数据集上,实验结果表明,该算法在归一化累计折损增益(NDCG)和1-Call两种评价标准下优于其他4种推荐算法,能够有效提高推荐质量。
- Abstract:
-
The traditional collaborative filtering algorithm focuses on methods for reducing the rating error, but it does not involve a user rating process. In this paper, we divide the user rating process into two phases, i.e., user rating and item selection, and take into account user-rating motivation and user-rating tendency. From the perspectives of predicting a user’s interest probability and user utility, we adopt a latent dirichlet allocation (LDA) to mine a user latent high-utility factor and an article-targeted probabilistic factor, and then weight and fuse these two factors in the first phase. In the second phase, we use singular value decomposition to predict a user rating value, which we then use in user recommendation lists. Our main contribution is our proposal of a two-phase weighted high-utility factor-based hybrid recommendation algorithm, which we abbreviate as Htp_Uf. We compare the effectiveness of the Htp_Uf algorithm with that of others using the MovieLens dataset. The results show that the performance of the proposed algorithm is superior to that of four other recommendation algorithms in terms of two evaluation criteria, namely, the normalized discounted cumulative gain and 1-call, which can effectively improve the quality of the recommendation.
备注/Memo
收稿日期:2017-10-31。
基金项目:国家自然科学基金项目(61602280);山东省自然科学基金项目(ZR2014FQ028).
作者简介:张旭,男,1991年生,硕士研究生,主要研究方向为智能信息处理、推荐系统;孙福振,男,1978年生,副教授,博士,主要研究方向为信息检索与数据挖掘、推荐系统、话题检测与热点跟踪。授权国家发明专利6项。发表学术论文30余篇;方春,女,1981年生,讲师,博士,主要研究方向为智能计算、模式识别、生物医学研究。发表学术论文10余篇。
通讯作者:孙福振.E-mail:sunfuzhen@sdut.edu.cn
更新日期/Last Update:
1900-01-01