[1]谭旭杰,邓长寿,吴志健,等.云环境下求解大规模优化问题的协同差分进化算法[J].智能系统学报,2018,13(2):243-253.[doi:10.11992/tis.201706053]
TAN Xujie,DENG Changshou,WU Zhijian,et al.Cooperative differential evolution in cloud computing for solving large-scale optimization problems[J].CAAI Transactions on Intelligent Systems,2018,13(2):243-253.[doi:10.11992/tis.201706053]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第2期
页码:
243-253
栏目:
学术论文—智能系统
出版日期:
2018-04-15
- Title:
-
Cooperative differential evolution in cloud computing for solving large-scale optimization problems
- 作者:
-
谭旭杰1, 邓长寿1, 吴志健2, 彭虎1, 朱鹊桥3
-
1. 九江学院 信息科学与技术学院, 江西 九江 332005;
2. 武汉大学 软件工程国家重点实验室, 湖北 武汉 430072;
3. 中国人民解放军93704部队
- Author(s):
-
TAN Xujie1, DENG Changshou1, WU Zhijian2, PENG Hu1, ZHU Queqiao3
-
1. School of Information Science and Technology, Jiujiang University, Jiujiang 332005, China;
2. State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China;
3. People’s Liberation Army of China 93704
-
- 关键词:
-
差分进化; 大规模优化; 协同进化; 弹性分布式数据集; 云计算
- Keywords:
-
differential evolution; large-scale optimization; coevolution; resilient distributed dataset; cloud computing
- 分类号:
-
TP301
- DOI:
-
10.11992/tis.201706053
- 摘要:
-
差分进化是一种求解连续优化问题的高效算法。然而差分进化算法求解大规模优化问题时,随着问题维数的增加,算法的性能下降,且搜索时间呈指数上升。针对此问题,本文提出了一种新的基于Spark的合作协同差分进化算法(SparkDECC)。SparkDECC采用分治策略,首先通过随机分组方法将高维优化问题分解成多个低维子问题,然后利用Spark的弹性分布式数据模型,对每个子问题并行求解,最后利用协同机制得到高维问题的完整解。通过在13个高维测试函数上进行的对比实验和分析,实验结果表明算法加速明显且可扩展性好,验证了SparkDECC的有效性和适用性。
- Abstract:
-
Differential evolution is an efficient algorithm for solving continuous optimization problems. However, its performance deteriorates quickly and the runtime grows exponentially when differential evolution is applied to solve large-scale optimization problems. To overcome this problem, a novel cooperative coevolution differential evolution based on Spark (called SparkDECC) was proposed. The strategy of separate processing is used in SparkDECC. Firstly, the large-scale problem is decomposed into several low-dimensional sub-problems by using the random grouping strategy; then each sub-problem can be tackled in a parallel way by taking advantage of the parallel computation capability of the resilient distributed datasets model in Spark; finally the optimal solution of the entire problem is obtained by using cooperation mechanism. The experimental results on 13 high-dimensional functions show that the new algorithm has good performances of speedup and scalability. The effectiveness and applicability of the proposed algorithm were verified.
备注/Memo
收稿日期:2017-06-13。
基金项目:国家自然科学基金项目(61364025,61763019);武汉大学软件工程国家重点实验室开放基金项目(SKLSE2012-09-39);九江学院科研项目(2013KJ30,2014KJYB032);江西省教育厅科技项目(GJJ161076,GJJ161072).
作者简介:谭旭杰,男,1978年生,讲师,主要研究方向为计算智能、云计算;邓长寿,男,1972年生,教授,博士,主要研究方向为计算智能、云计算、数据挖掘;吴志健,男,1963年生,教授,博士生导师,主要研究方向为智能计算、并行计算和智能信息处理。主持或参与国家自然科学基金、“863”计划等各类科研项目20余项,发表学术论文120余篇。
通讯作者:邓长寿.E-mail:csdeng@jju.edu.cn.
更新日期/Last Update:
1900-01-01