[1]吴诗婳,吴一全,周建江.直线截距直方图城区遥感图像多阈值分割[J].智能系统学报,2018,13(2):227-235.[doi:10.11992/tis.201609012]
WU Shihua,WU Yiquan,ZHOU Jianjiang.Multi-level thresholding for remote sensing image of urban area based on line intercept histogram[J].CAAI Transactions on Intelligent Systems,2018,13(2):227-235.[doi:10.11992/tis.201609012]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第2期
页码:
227-235
栏目:
学术论文—机器感知与模式识别
出版日期:
2018-04-15
- Title:
-
Multi-level thresholding for remote sensing image of urban area based on line intercept histogram
- 作者:
-
吴诗婳1, 吴一全1,2,3,4,5, 周建江1
-
1. 南京航空航天大学 电子信息工程学院, 江苏 南京 211106;
2. 城市空间信息工程北京市重点实验室, 北京 100038;
3. 江西省数字国土重点实验室, 江西 南昌 330013;
4. 江苏省大数据分析技术重点实验室, 江苏 南京 210044;
5. 浙江省信号处理重点实验室, 浙江 杭州 310023
- Author(s):
-
WU Shihua1, WU Yiquan1,2,3,4,5, ZHOU Jianjiang1
-
1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2. Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing 100038, China;
3. Jiangxi Province Key Labor
-
- 关键词:
-
城区提取; 遥感图像; 图像分割; 阈值化; 多阈值选取; 直线截距直方图; 倒数灰度熵; 人工蜂群优化
- Keywords:
-
extraction of urban area; remote sensing image; image segmentation; thresholding; multi-level threshold selection; straight-line intercept histogram; reciprocal grayscale entropy; optimization of artificial bee colony
- 分类号:
-
TP751.1;P237
- DOI:
-
10.11992/tis.201609012
- 摘要:
-
阈值分割简单有效,但现有的单阈值方法对城区图像分割效果不佳,难以取得令人满意的结果。为了快速准确地对城区遥感图像进行分割,本文提出了基于直线截距直方图倒数灰度熵和人工蜂群优化(artificial bee colony optimization, ABC)的多阈值分割方法。首先,给出直线截距直方图的定义并建立城区遥感图像的直线截距直方图;然后,计算该直方图倒数灰度熵的大小,推导出其单阈值选取公式;最后,将其推广到多阈值选取,并利用人工蜂群优化算法,对多个阈值进行快速精确地寻优,以此最终实现城区遥感图像的多阈值分割。实验结果表明,该方法所分割的图像中多目标的形状、边缘更为准确,纹理及细节特征更加清晰,且所需运行时间仅为同类多阈值分割方法的25%,是一种行之有效的城区遥感图像分割方法。
- Abstract:
-
Threshold segmentation is a kind of simple and effective method, however, the existing single-threshold method is hard to realize satisfactory effect in segmenting the images of urban area. In order to segment the remote sensing images of urban area quickly and accurately, a multi-threshold segmentation method based on straight-line intercept histogram, reciprocal grayscale entropy and Artificial Bee Colony (ABC) Optimization was proposed in the paper. Firstly, the straight-line intercept histogram was defined and the straight-line intercept histogram of the urban remote sensing image was established; then the value of the reciprocal grayscale entropy of the histogram was calculated and the single-threshold selection formula was deduced; finally, the application was popularized to multi-threshold selection, ABC Optimization algorithm was utilized for precise optimization of many thresholds, so as to finally realize the multi-threshold segmentation of urban remote sensing images. A large number of experiments show that, the multi-object shape and edge in the images segmented by the method are more accurate, the textures and details are more explicit, in addition, its running time is only 25% of other similar multi-threshold segmentation methods. This is a kind of effective method for segmenting the remote sensing images of urban area.
备注/Memo
收稿日期:2016-09-28。
基金项目:国家自然科学基金项目(61573183);城市空间信息工程北京市重点实验室开放基金项目(2014203);江西省数字国土重点实验室开放基金项目(DLLJ201412);江苏省大数据分析技术重点实验室开放基金项目(KXK1403);浙江省信号处理重点实验室开放基金项目(ZJKL_6_SP-OP2014-02);江苏高校优势学科建设工程项目(2012).
作者简介:吴诗婳,女,硕士研究生,主要研究方向为图像处理。发表学术论文多篇;吴一全,男,教授,博士生导师,博士,主要研究方向为图像处理与分析、目标检测与识别、智能信息处理。发表学术论文280余篇;周建江,男,教授,博士生导师,博士,主要研究方向雷达目标特性分析、特征控制与目标识别、机载电子信息系统、DSP技术。
通讯作者:吴一全.E-mail:nuaaimage@163.com.
更新日期/Last Update:
1900-01-01