[1]李海林,邹金串.基于分类词典的文本相似性度量方法[J].智能系统学报,2017,12(4):556-562.[doi:10.11992/tis.201608010]
LI Hailin,ZOU Jinchuan.Text similarity measure method based on classified dictionary[J].CAAI Transactions on Intelligent Systems,2017,12(4):556-562.[doi:10.11992/tis.201608010]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第4期
页码:
556-562
栏目:
学术论文—自然语言处理与理解
出版日期:
2017-08-25
- Title:
-
Text similarity measure method based on classified dictionary
- 作者:
-
李海林1, 邹金串2
-
1. 华侨大学 信息管理系, 福建 泉州 362021;
2. 华侨大学 现代应用统计与大数据研究中心, 福建 厦门 361021
- Author(s):
-
LI Hailin1, ZOU Jinchuan2
-
1. Department of Information Systems, Huaqiao University, Quanzhou 362021, China;
2. Research Center of Applied Statistics and Big Data, Huaqiao University, Xiamen 361021, China
-
- 关键词:
-
文本挖掘; 语义分析; 分类词典; 关键词提取; 词语编码; 相似性度量; 聚类; 分类
- Keywords:
-
data mining; semantic analysis; classified dictionary; keywords extraction; encoder; similarity measure; clustering; classification
- 分类号:
-
TP301
- DOI:
-
10.11992/tis.201608010
- 摘要:
-
针对现有基于语义知识规则分析的文本相似性度量方法存在时间复杂度高的局限性,提出基于分类词典的文本相似性度量方法。利用汉语词法分析系统ICTCLAS对文本分词,运用TF×IDF方法提取文本关键词,遍历分类词典获取关键词编码,通过计算文本关键词编码的近似性来衡量原始文本之间的相似度。选取基于语义知识规则和基于统计两个类别的相似性度量方法作为对比方法,通过传统聚类与KNN分类分别对相似性度量方法进行效果验证。数值实验结果表明,新方法在聚类与分类实验中均能取得较好的实验结果,相较于其他基于语义分析的相似性度量方法还具有良好的时间效率。
- Abstract:
-
Existing text-similarity measurement methods based on the semantic knowledge rules analysis have the limitation of high time complexity. In this paper, we propose a text-similarity measurement method based on the Classified Dictionary. First, we segmented texts using the Chinese Lexical Analysis System. Then, we extracted text keywords using the term frequency-inverse document frequency (tf*idf) method and performed keywords coding by traversing the dictionary. By calculating the coding similarity of the text keywords, we can determine the similarity of the original texts. As our two comparison methods, we selected similarity measurement methods based on semantic knowledge rules and statistics. We verified our similarity measurement results using traditional clustering algorithms and the k-nearest neighbors classification method. Our numerical results show that our proposed method can obtain relatively good results in clustering and classification experiments. In addition, compared with other semantic analysis measurement methods, this method has better time efficiency.
备注/Memo
收稿日期:2016-08-30。
基金项目:国家自然科学基金项目(61300139);福建省自然科学基金项目(2015J01581);华侨大学中青年教师科研提升计划项目(ZQN-PY220);华侨大学研究生科研创新能力培育计划项目(1511307006).
作者简介:李海林,男,1982年生,副教授,博士,主要研究方向为数据挖掘与决策支持,主持国家自然科学基金1项和省部级基金2项,发表学术论文40余篇,其中被SCI检索11篇,EI检索20余篇;邹金串,女,1993年生,硕士研究生,主要研究方向为文本挖掘。
通讯作者:邹金串,E-mail:Zou_jinchuan@163.com.
更新日期/Last Update:
2017-08-25