[1]彭昱忠,元昌安,李洁,等.个体最优共享GEP算法及其气象降水数据预测建模[J].智能系统学报编辑部,2016,11(3):401-409.[doi:10.11992/tis.201603035]
PENG Yuzhong,YUAN Changan,LI Jie,et al.Individual optimal sharing GEP algorithm and its application in forecast modeling of meteorological precipitation[J].CAAI Transactions on Intelligent Systems,2016,11(3):401-409.[doi:10.11992/tis.201603035]
点击复制
《智能系统学报》编辑部[ISSN 1673-4785/CN 23-1538/TP] 卷:
11
期数:
2016年第3期
页码:
401-409
栏目:
学术论文—智能系统
出版日期:
2016-06-25
- Title:
-
Individual optimal sharing GEP algorithm and its application in forecast modeling of meteorological precipitation
- 作者:
-
彭昱忠1,2, 元昌安1, 李洁3, 许明涛1, 陈冰廉1
-
1. 广西师范学院 计算机与信息工程学院, 广西 南宁 530021;
2. 广西师范学院 北部湾环境演变与资源利用教育部重点实验室, 广西 南宁 530001;
3. 广西科技师范学院 数计系, 广西 柳州 545004
- Author(s):
-
PENG Yuzhong1,2, YUAN Changan1, LI Jie3, XU Mingtao1, CHEN Binglian1
-
1. College of Computer & Information Engineering, Guangxi Normal University, Nanning 530023, China;
2. Key Lab of Beibu Gulf Environment Change and Resource Use of ministry of Education, Guangxi Normal University, Nanning 530001, China;
3. Departmen
-
- 关键词:
-
基因表达式编程; 经验共享; 时间序列; 气象建模; 降水预测; 演化计算; 演化建模
- Keywords:
-
gene expression programming; experience sharing; time series; meteorology modeling; precipitation forecasting; evolutionary computation; evolution modeling
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201603035
- 摘要:
-
针对基因表达式编程算法存在进化后期收敛慢且容易陷入局部最优而降低其数据建模的性能问题,和降水量因受诸多自然因素相互影响而难以准确地建模与预测的问题,提出了一种改进的基因表达式编程算法。该算法具有染色体最优状态记忆功能,在进化过程中可以按条件学习自身的历史经验知识,以加强局部搜索能力和促进收敛,同时尽量控制个体的趋同化而保持种群的多样性。3组不同区域和不同类型的真实降水数据集的实验验证了其可以改善传统GEP算法后期收敛慢的问题,寻优能力更强,降水数据拟合和预测效果均显著优于传统GEP算法、BP神经网络和NAR神经网络等算法。
- Abstract:
-
Gene expression programming (GEP) is characterized by slow convergence and ease of falling into a local optimum in the later stages of its evolution. Many methods are difficult to model and use to accurately forecast precipitation because of the simultaneous influence of many natural factors. In this paper, we propose an improved GEP algorithm, which has an optimal state memory function, can learn from historical experience in the process of evolution to strengthen the local search ability, and can thus promote convergence and, at the same time, control the convergence of individuals and maintain the diversity of the population. The experimental results of three groups from different regions and different actual precipitation data sets show that the proposed algorithm can improve the slow convergence problem of the traditional GEP algorithm and has better search ability. Experimental results also show that the proposed algorithm’s ability to fit and forecast precipitation data is significantly better than that of traditional GEP algorithm, as well as the BP and NAR neural network algorithms.
备注/Memo
收稿日期:2016-3-18;改回日期:。
基金项目:国家自然科学基金项目(61562008、41575051);广西科学研究与技术开发计划项目(1598019-1)、广西高校科学技术研究重点项目(ZD2014083).
作者简介:彭昱忠,男,1980年生,副教授,主要研究方向为智能计算及数据挖掘。主持国家级和省级基金项目4项,发表学术论文21篇。元昌安,男,1964年生,教授,主要研究方向为数据库与知识工程,先后主持国家级和省级基金项目8项,获广西科技进步奖5项,发表学术论文58篇。李洁,女,1980年生,讲师,主要研究方向为智能计算及数据挖掘,发表学术论文7篇。
通讯作者:李洁.E-mail:lijie980522@163.com.
更新日期/Last Update:
1900-01-01