[1]罗元,余佳航,汪龙峰,等.改进RBPF的移动机器人同步定位与地图构建[J].智能系统学报,2015,10(3):460-464.[doi:10.3969/j.issn.1673-4785.201404024]
LUO Yuan,YU Jiahang,WANG Longfeng,et al.Simultaneous localization and mapping of an improved RBPF based mobile robot[J].CAAI Transactions on Intelligent Systems,2015,10(3):460-464.[doi:10.3969/j.issn.1673-4785.201404024]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
10
期数:
2015年第3期
页码:
460-464
栏目:
学术论文—智能系统
出版日期:
2015-06-25
- Title:
-
Simultaneous localization and mapping of an improved RBPF based mobile robot
- 作者:
-
罗元, 余佳航, 汪龙峰, 王运凯
-
重庆邮电大学 国家信息无障碍工程研发中心, 重庆 400065
- Author(s):
-
LUO Yuan, YU Jiahang, WANG Longfeng, WANG Yunkai
-
National Information Accessibility Engineering Research & Development Center, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
- 关键词:
-
移动机器人; Rao-Blackwellized粒子滤波器; 同步定位与地图构建(SLAM); Gmapping算法; 自适应重采样技术
- Keywords:
-
mobile robot; Rao-Blackwellized particle filter; simultaneous localization and mapping (SLAM); Gmapping algorithm; adaptive resampling methods
- 分类号:
-
TP242.6
- DOI:
-
10.3969/j.issn.1673-4785.201404024
- 文献标志码:
-
A
- 摘要:
-
传统Rao-Blackwellized粒子滤波器(RBPF)在移动机器人同步定位与地图构建(SLAM)研究中,存在算法复杂度过高、占用内存空间过多导致实时性不理想的问题,因此提出一种改进算法.在某一特定状态的一组粒子集中,粒子的统计特性是一致的,改进算法从中选取一个代表粒子,进行卡尔曼更新步骤,并在同一粒子集中重复使用.同时结合Gmapping算法的建议分布和自适应重采样技术.实际Pioneer III移动机器人在机器人操作系统(ROS)平台上进行的实验表明,该方法在保证栅格地图精度的同时能提高系统的实时性,降低复杂度,提高运算速度.
- Abstract:
-
As in the research of simultaneous localization and mapping (SLAM) of mobile robot applying traditional Rao-Blackwellized particle filter, the computational complexity is too high and memory space usage is too large, which causes poor real-time performance, an improved approach is proposed. Among a group of particles gathering in a particular state, the statistical properties of particles are identical. By applying the Kalman updating step to one representative particle in the group of particles, and using it repeatedly in the same group, the complexity is reduced and arithmetic speed is improved. Combining the proposed distribution and adaptive resampling methods from the Gmapping algorithm, the results of actual experiment carried out with Pioneer III robot and ROS platform illustrate that the real-time performance of the proposal could be enhanced while ensuring the quality of grid map.
备注/Memo
收稿日期:2014-4-15;改回日期:。
基金项目:国家自然科学基金资助项目(51075420);重庆市教委科学技术研究项目(KJ120519).
作者简介:罗元,女,1972年生,教授,博士,主要研究方向为机器视觉、数字图像处理.获得国家发明专利6项,重庆市科技进步奖1项.发表学术论文50余篇,被SCI、EI检索20余篇.余佳航,男,1990年生,硕士研究生,主要研究方向为移动机器人导航.汪龙峰,男,1989年生,硕士研究生,主要研究方向为移动机器人导航.
通讯作者:余佳航. E-mail: tracy_the_1@126.com.
更新日期/Last Update:
2015-07-15