[1]吴朝阳.小波变换和GM-ARMA组合模型的股指预测[J].智能系统学报,2011,6(3):279-282.
WU Zhaoyang.Using wavelet transformation and a GM-ARMA model to forecast stock index[J].CAAI Transactions on Intelligent Systems,2011,6(3):279-282.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
6
期数:
2011年第3期
页码:
279-282
栏目:
学术论文—智能系统
出版日期:
2011-06-25
- Title:
-
Using wavelet transformation and a GM-ARMA model to forecast stock index
- 文章编号:
-
1673-4785(2011)03-0279-04
- 作者:
-
吴朝阳
-
康考迪亚大学 统计与数学系,蒙特利尔H3G 2H9
- Author(s):
-
WU Zhaoyang
-
The Department of Mathematics and Statistics, Concordia University, Montreal H3G 2H9, Canada
-
- 关键词:
-
小波分解; 灰色模型; ARMA模型; GM-ARMA模型; 股指预测
- Keywords:
-
wavelet decomposition; grey model; ARMA model; GM-ARMA model; stock prediction
- 分类号:
-
TP18
- 文献标志码:
-
A
- 摘要:
-
当前在利用小波分解和其他模型建立组合模型的过程中,对小波基方程的选择和分解层数并没有一个标准,基本上是通过经验和一些实验来决定这2个因素;而且很多利用小波分解建立的组合模型并不考虑模型之间相互的影响,对各个子模型的参数估计采取各自独立的估计,从而导致预测结果不是最优. 为此,提出了先对小波基方程和分解层数这2个特征进行参数化, 然后定量地对所有子模型的特征参数进行统一、综合的评估,以达到建立最佳组合模型的目的. 由于该组合模型是由小波分解、灰色模型和ARMA模型组合而成的,因此称为WGM-ARMA模型. 股指预测的实例验证了WGM-ARMA模型大幅度地降低了预测误差,说明了该组合模型的有效性、实用性和可行性.
- Abstract:
-
During the process of building a hybrid model by combining wavelet decomposition and other techniques, there is no standard in terms of selecting a wavelet base function and decomposition level. The commonly used ways are usually based on the researcher’s experience or several experiments instead of a quantitative approach. In addition, many hybrid models based on wavelet decomposition do not consider the interaction between sub models. Instead of estimating the parameters in all sub models as the whole, they estimate the parameters separately, which lead to that the prediction result is not optimal. In order to solve this problem, this paper first introduced two new parameters, wavelet functions and decomposition levels, then quantitatively estimated all the parameters as a whole for the purpose of building an optimal hybrid model. For convenience, the model was called the WGM-ARMA model because it combines the wavelet decomposition, grey model, as well as autoregressive integrated moving average (ARMA) model. Experimental results show that the hybrid model significantly reduces prediction errors. As a result, it can be concluded that the model in terms of forecasting stock index is valid and useful, along with the method used to construct the optimal hybrid model.
更新日期/Last Update:
2011-07-23