[1]富春岩,葛茂松.一种能够适应概念漂移变化的数据流分类方法[J].智能系统学报,2007,2(4):86-91.
FU Chun-yan,GE Mao-song.A data stream classification methods adaptive to concept drift[J].CAAI Transactions on Intelligent Systems,2007,2(4):86-91.
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
2
期数:
2007年第4期
页码:
86-91
栏目:
学术论文—机器学习
出版日期:
2007-08-25
- Title:
-
A data stream classification methods adaptive to concept drift
- 文章编号:
-
1673-4785(2007)04-0086-06
- 作者:
-
富春岩,葛茂松
-
佳木斯大学公共计算机教研部,黑龙江佳木斯154007
- Author(s):
-
FU Chun-yan, GE Mao-song
-
Commonality Teaching Department of Computer, Jiamusi University, Jiamus i 154007,China
-
- 关键词:
-
数据流; 分类; 概念漂移; 在线学习; 决策树
- Keywords:
-
data streams; classification; concept drifting; onli n e learning; decision tree
- 分类号:
-
TP311.13
- 文献标志码:
-
A
- 摘要:
-
目前多数的数据流分类方法都是基于数据稳定分布这一假设,忽略了真实数据在一段时间内会发生潜在概念性的变化,这可能会降低分类模型的预测精度. 针对数据流的特性,提出一种能够识别并适应概念漂移发生的在线分类算法,实验表明它能根据目前概念漂移的状况,自动地调整训练窗口和模型重建期间新样本的个数.
- Abstract:
-
At present, most classification methods for data streams are developed with the assumption of steady data distribution. However, the data collected fr om the real world will change over a period of time in the underlying concepts ( known as concept drifting). This lowers the predictive precision of a classifica tion model. This paper proposes a classification algorithm that can identify and adapt to occurrences of concept drifting according to the characteristics of the data stream. Experiments show that the proposed algorithm dynamically adjusts the size of the training window and the number of new examples during model rec onstruction according to the current rate of concept drifting.
更新日期/Last Update:
2009-05-07