[1]张汝波,蔺庆龙,张天一.基于深度学习的图像篡改检测方法综述[J].智能系统学报,2025,20(2):283-304.[doi:10.11992/tis.202403004]
 ZHANG Rubo,LIN Qinglong,ZHANG Tianyi.A review of image tampering detection methods based on deep learning[J].CAAI Transactions on Intelligent Systems,2025,20(2):283-304.[doi:10.11992/tis.202403004]
点击复制

基于深度学习的图像篡改检测方法综述

参考文献/References:
[1] 田秀霞, 李华强, 张琴, 等. 基于双通道R-FCN的图像篡改检测模型[J]. 计算机学报, 2021, 44(2): 370-383.
TIAN Xiuxia, LI Huaqiang, ZHANG Qin, et al. Dual-channel R-FCN model for image forgery detection[J]. Chinese journal of computers, 2021, 44(2): 370-383.
[2] 胡林辉, 陈保营, 谭舜泉, 等. 基于Convnext-Upernet的图像篡改检测定位模型[J]. 计算机学报, 2023, 46(10): 2225-2239.
HU Linhui, CHEN Baoying, TAN Shunquan, et al. Convnext-upernet based deep-learning model for image forgery detection and localization[J]. Chinese journal of computers, 2023, 46(10): 2225-2239.
[3] 蔺琛皓, 沈超, 邓静怡, 等. 虚假数字人脸内容生成与检测技术[J]. 计算机学报, 2023, 46(3): 469-498.
LIN Chenhao, SHEN Chao, DENG Jingyi, et al. False digital facial content generation and detection technology[J]. Journal of computer science, 2023, 46(3): 469-498.
[4] 李昊东, 庄培裕, 李斌. 基于深度学习的数字图像篡改定位方法综述[J]. 信号处理, 2021, 37(12): 2278-2301.
LI Haodong, ZHUANG Peiyu, LI Bin. A survey on deep learning based digital image tampering localization methods[J]. Journal of signal processing, 2021, 37(12): 2278-2301.
[5] 孙鹏, 郎宇博, 樊舒, 等. 图像拼接篡改的自动色温距离分类检验方法[J]. 自动化学报, 2018, 44(7): 1321-1332.
SUN Peng, LANG Yubo, FAN Shu, et al. Detection of image splicing manipulation by automated classification of color temperature distance[J]. Acta automatica sinica, 2018, 44(7): 1321-1332.
[6] 李晓龙, 俞能海, 张新鹏, 等. 数字媒体取证技术综述[J]. 中国图象图形学报, 2021, 26(6): 1216-1226.
LI Xiaolong, YU Nenghai, ZHANG Xinpeng, et al. Overview of digital media forensics technology[J]. Journal of image and graphics, 2021, 26(6): 1216-1226.
[7] POPESCU A C, FARID H. Exposing digital forgeries in color filter array interpolated images[J]. IEEE transactions on signal processing, 2005, 53(10): 3948-3959.
[8] FARID H, LYU Siwei. Higher-order wavelet statistics and their application to digital forensics[C]//2003 Conference on Computer Vision and Pattern Recognition Workshop. Madison: IEEE, 2003: 94.
[9] FRIDRICH J, SOUKAL D, LUKAS J. Detection of copy-move forgery in digital images[C]//Proceedings of digital forensic research workshop. Cleveland: Elsevier, 2003: 652-662.
[10] 刘丽颖, 王金鑫, 曹少丽, 等. 检测小篡改区域的U型网络[J]. 中国图象图形学报, 2022, 27(1): 176-187.
LIU Liying, WANG Jinxin, CAO Shaoli, et al. U-Net for detecting small forgery region[J]. Chinese journal of image and graphics, 2022, 27(1): 176-187.
[11] 陈海鹏, 张世博, 吕颖达. 多尺度感知与边界引导的图像篡改检测方法[J/OL]. 吉林大学学报(工学版). [2024-03-04]. https://doi.org/10.13229/j.cnki.jdxbgxb.20231027.
CHEN Haipeng, ZHANG Shibo, LYU Yingda. Multi-scale context-aware and boundary-guided image manipulation detection method[J/OL]. Journal of Jilin University (engineering edition). [2024-03-04]. https://doi.org/10.13229/j.cnki.jdxbgxb.20231027.
[12] 魏伟一, 赵毅凡, 陈帼. 基于深度特征提取和DCT变换的图像复制粘贴篡改检测[J]. 计算机工程与科学, 2023, 45(1): 163-170.
WEI Weiyi, ZHAO Yifan, CHEN Guo. Image copy-move forgery detection based on deep feature extraction and DCT transform[J]. Computer engineering and science, 2023, 45(1): 163-170.
[13] 朱新同, 唐云祁, 耿鹏志. 数字图像篡改检测技术综述[J]. 中国人民公安大学学报(自然科学版), 2022, 28(4): 87-99.
ZHU Xintong, TANG Yunqi, GENG Pengzhi. Survey on digital image tampering detection technology[J]. Journal of People’s Public Security University of China (natural science edition), 2022, 28(4): 87-99.
[14] 左鑫兰. 图像篡改检测技术研究综述[J]. 长江信息通信, 2022, 35(3): 74-76.
ZUO Xinlan. Research of image manipulation detection technology[J]. Changjiang information and communication, 2022, 35(3): 74-76.
[15] BI Xiuli, WEI Yang, XIAO Bin, et al. RRU-Net: the ringed residual U-Net for image splicing forgery detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019: 30-39.
[16] VERDOLIVA L. Media forensics and DeepFakes: an overview[J]. IEEE journal of selected topics in signal processing, 2020, 14(5): 910-932.
[17] MEHRJARDI F Z, LATIF A M, ZARCHI M S, et al. A survey on deep learning-based image forgery detection[J]. Pattern recognition, 2023, 144: 109778.
[18] PHAM N T, PARK C S. Toward deep-learning-based methods in image forgery detection: a survey[J]. IEEE access, 2023, 11: 11224-11237.
[19] ZANARDELLI M, GUERRINI F, LEONARDI R, et al. Image forgery detection: a survey of recent deep-learning approaches[J]. Multimedia tools and applications, 2023, 82(12): 17521-17566.
[20] 杨衍宇, 魏为民, 张运琴. 一种改进的双流Faster R-CNN图像篡改识别模型[J]. 计算机应用与软件, 2023, 40(12): 189-194.
YANG Yanyu, WEI Weimin, ZHANG Yunqin. Image forgery recognition model based on improved dual-stream faster R-CNN[J]. Computer applications and software, 2023, 40(12): 189-194.
[21] 付顺旺, 陈茜, 李智, 等. 用于篡改图像检测和定位的双通道渐进式特征过滤网络[J]. 计算机应用, 2024, 44(4): 1303-1309.
FU Shunwang, CHEN Qian, LI Zhi, et al. Two-channel progressive feature filtering network for tampered image detection and localization[J]. Journal of computer applications, 2024, 44(4): 1303-1309.
[22] ZHOU Peng, HAN Xintong, MORARIU V I, et al. Learning rich features for image manipulation detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1053-1061.
[23] ZHOU Peng, HAN Xintong, MORARIU V I, et al. Two-stream neural networks for tampered face detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1831-1839.
[24] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 39(6): 1137-1149.
[25] RAO Yuan, NI Jiangqun, ZHANG Weizhe, et al. Towards JPEG-resistant image forgery detection and localization via self-supervised domain adaptation[J]. IEEE transactions on pattern analysis and machine intelligence, 2022: 1-12.
[26] CHEN Xinru, DONG Chengbo, JI Jiaqi, et al. Image manipulation detection by multi-view multi-scale supervision[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 14165-14173.
[27] LI Dong, ZHU Jiaying, WANG Menglu, et al. Edge-aware regional message passing controller for image forgery localization[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 8222-8232.
[28] LIU Yaqi, LYU Binbin, JIN Xin, et al. TBFormer: two-branch Transformer for image forgery localization[J]. IEEE signal processing letters, 2023, 30: 623-627.
[29] BAYAR B, STAMM M C. Constrained convolutional neural networks: a new approach towards general purpose image manipulation detection[J]. IEEE transactions on information forensics and security, 2018, 13(11): 2691-2706.
[30] FU Jun, LIU Jing, TIAN Haijie, et al. Dual attention network for scene segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3146-3154.
[31] WU Yue, ABDALMAGEED W, NATARAJAN P. ManTra-net: manipulation tracing network for detection and localization of image forgeries with anomalous features[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9543-9552.
[32] LIN Xun, WANG Shuai, DENG Jiahao, et al. Image manipulation detection by multiple tampering traces and edge artifact enhancement[J]. Pattern recognition, 2023, 133: 109026.
[33] DAS S, ISLAM M S, AMIN M R. GCA-net: utilizing gated context attention for improving image forgery localization and detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 81-90.
[34] WARIF N B A, IDRIS M Y I, WAHAB A W A, et al. An evaluation of error level analysis in image forensics[C]//2015 5th IEEE International Conference on System Engineering and Technology. Shah Alam: IEEE, 2015: 23-28.
[35] GUILLARO F, COZZOLINO D, SUD A, et al. TruFor: leveraging all-round clues for trustworthy image forgery detection and localization[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 20606-20615.
[36] COZZOLINO D, VERDOLIVA L. Noiseprint: a CNN-based camera model fingerprint[J]. IEEE transactions on information forensics and security, 2019, 15: 144-159.
[37] WANG Junke, WU Zuxuan, CHEN Jingjing, et al. ObjectFormer for image manipulation detection and localization[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 2354-2363.
[38] GUO Xiao, LIU Xiaohong, REN Zhiyuan, et al. Hierarchical fine-grained image forgery detection and localization[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 3155-3165.
[39] KWON M J, NAM S H, YU I J, et al. Learning JPEG compression artifacts for image manipulation detection and localization[J]. International journal of computer vision, 2022, 130(8): 1875-1895.
[40] ZHANG Zhenfei, LI Mingyang, CHANG M C. A new benchmark and model for challenging image manipulation detection[J]. Proceedings of the AAAI conference on artificial intelligence, 2024, 38(7): 7405-7413.
[41] GU A R, NAM J H, LEE S C. FBI-net: frequency-based image forgery localization via multitask learning with self-attention[J]. IEEE access, 2022, 10: 62751-62762.
[42] LIU Yaqi, ZHU Xiaobin, ZHAO Xianfeng, et al. Adversarial learning for constrained image splicing detection and localization based on atrous convolution[J]. IEEE transactions on information forensics and security, 2019, 14(10): 2551-2566.
[43] NILOY F F, KUMAR BHAUMIK K, WOO S S. CFL-net: image forgery localization using contrastive learning[C]//2023 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2023: 4631-4640.
[44] ZHONG Junliu, PUN C M. An end-to-end dense-InceptionNet for image copy-move forgery detection[J]. IEEE transactions on information forensics and security, 2019, 15: 2134-2146.
[45] HAO Jing, ZHANG Zhixin, YANG Shicai, et al. TransForensics: image forgery localization with dense self-attention[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 15035-15044.
[46] LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 9992-10002.
[47] TOUVRON H, CORD M, SABLAYROLLES A, et al. Going deeper with image Transformers[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 32-42.
[48] ZHOU Zongwei, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[M]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer International Publishing, 2018: 3-11.
[49] LIU Xiaohong, LIU Yaojie, CHEN Jun, et al. PSCC-net: progressive spatio-channel correlation network for image manipulation detection and localization[J]. IEEE transactions on circuits and systems for video technology, 2022, 32(11): 7505-7517.
[50] WANG Jingdong, SUN Ke, CHENG Tianheng, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(10): 3349-3364.
[51] SALLOUM R, REN Yuzhuo, JAY KUO C C. Image splicing localization using a multi-task fully convolutional network(MFCN)[J]. Journal of visual communication and image representation, 2018, 51: 201-209.
[52] SUN Zhihao, JIANG Haoran, WANG Danding, et al. SAFL-net: semantic-agnostic feature learning network with auxiliary plugins for image manipulation detection[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 22367-22376.
[53] ZHOU Peng, CHEN B C, HAN Xintong, et al. Generate, segment, and refine: towards generic manipulation segmentation[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(7): 13058-13065.
[54] Ma Xiaochen, Du Bo, Liu Xianggen, et al. IML-ViT: Image manipulation localization by vision Transformer[EB/OL]. (2023-07-27)[2024-03-04]. https://arxiv.org/abs/2307.14863v1.
[55] ZENG Yuyuan, ZHAO Bowen, QIU Shanzhao, et al. Toward effective image manipulation detection with proposal contrastive learning[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(9): 4703-4714.
[56] HAO Qixian, REN Ruyong, WANG Kai, et al. EC-Net: General image tampering localization network based on edge distribution guidance and contrastive learning[J]. Knowledge-based systems, 2024, 293: 111656.
[57] WU Haiwei, CHEN Yiming, ZHOU Jiantao. Rethinking image forgery detection via contrastive learning and unsupervised clustering[EB/OL]. (2023-08-18) [2024-03-04]. https://arxiv.org/abs/2308.09307v1.
[58] ZHOU Jizhe, MA Xiaochen, DU Xia, et al. Pre-training-free image manipulation localization through non-mutually exclusive contrastive learning[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 22289-22299.
[59] BARNI M, PHAN Q T, TONDI B. Copy move source-target disambiguation through multi-branch CNNs[J]. IEEE transactions on information forensics and security, 2020, 16: 1825-1840.
[60] ZHANG Ying, GOH J, WIN Lei Lei, et al. Image region forgery detection: a deep learning approach[C]//Proceedings of the Singapore Cyber-Security Conference 2016. Singapore: IOS Press, 2016: 1-11.
[61] ISLAM A, LONG Chengjiang, BASHARAT A, et al. DOA-GAN: dual-order attentive generative adversarial network for image copy-move forgery detection and localization[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4676-4685.
[62] 石泽男, 陈海鹏, 张冬, 等. 预训练驱动的多模态边界感知视觉Transformer[J]. 软件学报, 2023, 34(5): 2051-2067.
SHI Zenan, CHEN Haipeng, ZHANG Dong, et al. Pre-training-driven multimodal boundary-aware vision Transformer[J]. Journal of software, 2023, 34(5): 2051-2067.
[63] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[EB/OL]. (2020-10-22) [2024-03-04]. https://arxiv.org/abs/2010.11929.
[64] LI Yanghao, XIE Saining, CHEN Xinlei, et al. Benchmarking detection transfer learning with vision Transformers[EB/OL]. (2021-11-22)[2024-03-04]. https://arxiv.org/abs/2111.11429v1.
[65] LI Yanghao, WU Chaoyuan, FAN Haoqi, et al. MViTv2: improved multiscale vision Transformers for classification and detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 4794-4804.
[66] LI Yuxi, CHENG Fuyuan, YU Wangbo, et al. AdaIFL: adaptive image forgery localization via a dynamic and importance-aware Transformer network[C]//Computer Vision–ECCV 2024. Cham: Springer Nature Switzerland, 2024: 477-493.
[67] LI Shuaibo, MA Wei, GUO Jianwei, et al. UnionFormer: unified-learning Transformer with multi-view representation for image manipulation detection and localization[C]//2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 12523-12533.
[68] ROZANTSEV A, SALZMANN M, FUA P. Beyond sharing weights for deep domain adaptation[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(4): 801-814.
[69] ZHUANG Peiyu, LI Haodong, YANG Rui, et al. ReLoc: a restoration-assisted framework for robust image tampering localization[J]. IEEE transactions on information forensics and security, 2023, 18: 5243-5257.
[70] WU Haiwei, ZHOU Jiantao, TIAN Jinyu, et al. Robust image forgery detection over online social network shared images[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 13430-13439.
[71] HSU Y F, CHANG S F. Detecting image splicing using geometry invariants and camera characteristics consistency[C]//2006 IEEE International Conference on Multimedia and Expo. Toronto: IEEE, 2006: 549-552.
[72] AMERINI I, BALLAN L, CALDELLI R, et al. A SIFT-based forensic method for copy–move attack detection and transformation recovery[J]. IEEE transactions on information forensics and security, 2011, 6(3): 1099-1110.
[73] DONG Jing, WANG Wei, TAN Tieniu. CASIA image tampering detection evaluation database[C]//2013 IEEE China Summit and International Conference on Signal and Information Processing. Beijing: IEEE, 2013: 422-426.
[74] DE CARVALHO T J, RIESS C, ANGELOPOULOU E, et al. Exposing digital image forgeries by illumination color classification[J]. IEEE transactions on information forensics and security, 2013, 8(7): 1182-1194.
[75] TRALIC D, ZUPANCIC I, GRGIC S, et al. CoMoFoD: New database for copy-move forgery detection[C]//Proceedings ELMAR-2013. Zadar: IEEE, 2013: 49-54.
[76] SILVA E, CARVALHO T, FERREIRA A, et al. Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes[J]. Journal of visual communication and image representation, 2015, 29: 16-32.
[77] COZZOLINO D, POGGI G, VERDOLIVA L. Efficient dense-field copy–move forgery detection[J]. IEEE transactions on information forensics and security, 2015, 10(11): 2284-2297.
[78] WEN Bihan, ZHU Ye, SUBRAMANIAN R, et al. COVERAGE: a novel database for copy-move forgery detection[C]//2016 IEEE International Conference on Image Processing. Phoenix: IEEE, 2016: 161-165.
[79] ZAMPOGLOU M, PAPADOPOULOS S, KOMPATSIARIS Y. Detecting image splicing in the wild (WEB)[C]//2015 IEEE International Conference on Multimedia & Expo Workshops. Turin: IEEE, 2015: 1-6.
[80] KORUS P, HUANG Jiwu. Evaluation of random field models in multi-modal unsupervised tampering localization[C]//2016 IEEE International Workshop on Information Forensics and Security. Abu Dhabi: IEEE, 2016: 1-6.
[81] GUAN Haiying, KOZAK M, ROBERTSON E, et al. MFC datasets: large-scale benchmark datasets for media forensic challenge evaluation[C]//2019 IEEE Winter Applications of Computer Vision Workshops. Waikoloa Village: IEEE, 2019: 63-72.
[82] HELLER S, ROSSETTO L, SCHULDT H. The PS-Battles dataset—an image collection for image manipulation detection[EB/OL]. (2018-04-13)[2024-03-04]. https://arxiv.org/abs/1804.04866.
[83] MAHFOUDI G, TAJINI B, RETRAINT F, et al. DEFACTO: image and face manipulation dataset[C]//2019 27th European Signal Processing Conference. A Coruna: IEEE, 2019: 1-5.
[84] NOVOZAMSKY A, MAHDIAN B, SAIC S. IMD2020: a large-scale annotated dataset tailored for detecting manipulated images[C]//2020 IEEE Winter Applications of Computer Vision Workshops. Snowmass Village: IEEE, 2020: 71-80.
[85] WU Yue, ABD-ALMAGEED W, NATARAJAN P. BusterNet: detecting copy-move image forgery with source/target localization[C]//Computer Vision – ECCV 2018. Cham: Springer International Publishing, 2018: 170-186.
[86] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 740-755.
[87] XIAO Jianxiong, HAYS J, EHINGER K A, et al. SUN database: large-scale scene recognition from abbey to zoo[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2010: 3485-3492.
[88] GLOE T, B?HME R, GLOE T, et al. The ‘Dresden Image Database’ for benchmarking digital image forensics[C]//Proceedings of the 2010 ACM Symposium on Applied Computing. Sierre: ACM, 2010: 1584-1590.
[89] ZHUANG Peiyu, LI Haodong, TAN Shunquan, et al. Image tampering localization using a dense fully convolutional network[J]. IEEE transactions on information forensics and security, 2021, 16: 2986-2999.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2024-3-4。
基金项目:国家自然科学基金项目(62202024); 中央高校基本科研业务费专项资金项目(501QYJC2024139006).
作者简介:张汝波,教授,辽宁省教学名师,主要研究方向为智能机器人决策与控制技术。主持国家重点基础研究发展计划项目、国家高技术研究发展计划项目、国家自然科学基金项目等20余项。获得国家科学技术进步二等奖1项、省部级科学技术奖6项,获发明专利授权10余项。发表学术论文200余篇。E-mail:zhangrubo@dlnu.edu.cn;蔺庆龙,硕士研究生,主要研究方向为图像篡改检测。E-mail:linqinglong1999@163.com;张天一,助理教授,博士,主要研究方向为计算机视觉、机器学习以及图像视频内容安全分析,具体研究内容包括图像分割、目标检测、视频动作识别、深度学习、弱监督学习。主持国家自然科学基金项目1项、企事业单位委托项目1项。发表学术论文10余 篇。E-mail:zhang_tianyi@buaa.edu.cn。
通讯作者:张天一. E-mail:zhang_tianyi@buaa.edu.cn

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com