[1]陈智雄,詹学滋,左嘉烁.基于深度强化学习的电力线与无线双模通信MAC层接入算法[J].智能系统学报,2025,20(2):344-354.[doi:10.11992/tis.202312023]
CHEN Zhixiong,ZHAN Xuezi,ZUO Jiashuo.Adaptive MAC layer access algorithm for power line and wireless dual-mode communication based on deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2025,20(2):344-354.[doi:10.11992/tis.202312023]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第2期
页码:
344-354
栏目:
学术论文—机器学习
出版日期:
2025-03-05
- Title:
-
Adaptive MAC layer access algorithm for power line and wireless dual-mode communication based on deep reinforcement learning
- 作者:
-
陈智雄1,2, 詹学滋1, 左嘉烁1
-
1. 华北电力大学 电子与通信工程系, 河北 保定 071003;
2. 河北省电力物联网技术重点实验室, 河北 保定 071003
- Author(s):
-
CHEN Zhixiong1,2, ZHAN Xuezi1, ZUO Jiashuo1
-
1. Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China;
2. Hebei Key Laboratory of Electric Power Internet of Things Technology, Baoding 071003, China
-
- 关键词:
-
电力线通信; 无线通信; 双模节点; 深度强化学习; 双深度Q网络; MAC层接入; 公平效用函数; P坚持接入
- Keywords:
-
power line communication; wireless communication; dual-mode nodes; deep reinforcement learning; double deep Q-network; MAC layer access; fairness utility function; P-persistent access
- 分类号:
-
TM721
- DOI:
-
10.11992/tis.202312023
- 摘要:
-
针对无线和电力线通信混合组网的信道竞争接入问题,提出了一种基于深度强化学习的电力线与无线双模通信的MAC接入算法。双模节点根据网络广播信息和信道使用等数据自适应接入双媒质信道。首先建立了基于双模通信网络交互和统计信息的双模通信节点数据采集模型;接着定义了基于协作信息的深度强化学习(deep reinforcement learning, DRL)状态空间、动作空间和奖励,设计了联合α-公平效用函数和P坚持接入机制的节点决策流程,实现基于双深度Q网络(double deep Q-network, DDQN)的双模节点自适应接入算法;最后进行算法性能仿真和对比分析。仿真结果表明,提出的接入算法能够在保证双模网络和信道接入公平性的条件下,有效提高双模通信节点的接入性能。
- Abstract:
-
Aiming to address the issue of channel competition in hybrid networks of PLC and WC, this study proposes a MAC access algorithm based on deep reinforcement learning for dual-mode communication over power lines and wireless channels. Dual-mode nodes adaptively access the dual-medium channel based on data such as network broadcast information and channel usage. First, a dual-mode node data collection model is established based on interactions and statistical information from dual-mode communication networks. Then, the DRL state space, action space, and rewards are defined based on collaborative information, and an adaptive access algorithm is developed using a dual deep Q-network. This algorithm incorporates a node decision-making process that combines the α-fairness utility function with the P-persistent access mechanism. Finally, simulations and comparative analyses of the algorithm’s performance are performed. Simulation results show that the proposed access algorithm effectively improves the access performance of dual-mode communication nodes while ensuring fairness in dual-mode network and channel access.
备注/Memo
收稿日期:2023-12-16。
基金项目:国家自然科学基金青年基金项目(61601182);中央高校科研业务费专项资金项目(2023MS113).
作者简介:陈智雄,副教授,主要研究方向为电力物联网、电力线通信。主持国家自然科学基金项目、河北省自然科学基金项目等10余项,获得国家发明专利授权6项。E-mail:zxchen@ncepu.edu.cn;詹学滋,硕士研究生,主要研究方向为电力线通信和无线通信。E-mail:15659630390@163.com;左嘉烁,硕士研究生,主要研究方向为电力线通信和无线通信。E-mail:1032888158@qq.com。
通讯作者:陈智雄. E-mail:zxchen@ncepu.edu.cn
更新日期/Last Update:
2025-03-05