[1]王军,王佳慧,李玉莲,等.地下空间无人系统研究综述[J].智能系统学报,2024,19(1):2-21.[doi:10.11992/tis.202304035]
 WANG Jun,WANG Jiahui,LI Yulian,et al.Review of unmanned systems research in underground space[J].CAAI Transactions on Intelligent Systems,2024,19(1):2-21.[doi:10.11992/tis.202304035]
点击复制

地下空间无人系统研究综述

参考文献/References:
[1] 操秀英. 中国已成为地下空间开发利用大国[N]. 科技日报, 2021-12-28(1).
CAO Xiuying. China has become a major country in underground space development and utilization[N]. Technology Daily, 2021-12-28(1).
[2] 姜涛, 秦斯成, 宋道柱, 等. 地下空间安全评价方法综述[J]. 环境工程, 2015, 33(S1): 661–668
JIANG Tao, QIN Sicheng, SONG Daozhu, et al. Research summary of satety assessment methods of underground space[J]. Environmental engineering, 2015, 33(S1): 661–668
[3] 贾宗仁, 周夏, 李方舟, 等. 我国地下空间资源调查背景、需求及对策[J]. 中国矿业, 2021, 30(S2): 8–12
JIA Zongren, ZHOU Xia, LI Fangzhou, et al. The background, demand and countermeasures of the underground space investigation in China[J]. China mining magazine, 2021, 30(S2): 8–12
[4] 才惠莲. 我国城市地下空间立法的特点、问题及改进[J]. 安全与环境工程, 2022, 29(1): 218–224
CAI Huilian. Characteristics, problems and improvement of urban underground space legislation in China[J]. Safety and environmental engineering, 2022, 29(1): 218–224
[5] 傅光明, 刘兴荣. “地下斗争”: 未来战场新视野[J]. 军事文摘, 2017(9): 61–63
FU Guangming, LIU Xingrong. “underground struggle”: a new vision of future battlefield[J]. Military digest, 2017(9): 61–63
[6] 赵京燕. 创新科技, 向深空深海深地挺进[J]. 国土资源, 2016(10): 8–11
ZHAO Jingyan. Innovating science and technology, advancing deeply into deep space and deep sea[J]. Land & resources, 2016(10): 8–11
[7] 习近平. 在中国科学院第二十次院士大会、中国工程院第十五次院士大会、中国科协第十次全国代表大会上的讲话[J]. 中华人民共和国国务院公报, 2021(16): 6–11
XI Jinping. Speech at the 20th academician conference of the Chinese academy of sciences, the 15th academician conference of the Chinese academy of engineering and the 10th national congress of the China association for science and technology[J]. Gazette of the state council of the People’s Republic of China, 2021(16): 6–11
[8] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019, 62(6): 2128–2138
DI Qingyun, ZHU Rixiang, XUE Guoqiang, et al. New development of the electromagnetic(EM)methods for deep exploration[J]. Chinese journal of geophysics, 2019, 62(6): 2128–2138
[9] 王赟, 菅一凡, 贺永胜, 等. 地下实验室与深地环境下的地球物理观测[J]. 地球物理学报, 2022, 65(12): 4527–4542
WANG Yun, JIAN Yifan, HE Yongsheng, et al. Underground laboratories and deep underground geophysical observations[J]. Chinese journal of geophysics, 2022, 65(12): 4527–4542
[10] 谢和平, 张茹, 邓建辉, 等. 基于“深地-地表”联动的深地科学与地灾防控技术体系初探[J]. 工程科学与技术, 2021, 53(4): 1–12
XIE Heping, ZHANG Ru, DENG Jianhui, et al. A preliminary study on the technical system of deep earth science and geo disaster prevention-control based on the “deep earth-surface” linkage strategy[J]. Advanced engineering sciences, 2021, 53(4): 1–12
[11] ZHANG Cun, WANG Fangtian, BAI Qingsheng. Underground space utilization of coalmines in China: a review of underground water reservoir construction[J]. Tunnelling and underground space technology, 2021, 107: 103657.
[12] 中华人民共和国国务院. 国务院关于印发“十三五”国家科技创新规划的通知[EB/OL]. (2016-7-28) [2021-5-20]. http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm.
State Council of the People’s Republic of China. State council on the issuance of the "thirteenth five-year" national science and technology innovation plan n-otice[EB/OL]. (2016–7–28) [2021–5–20]. http://www.gov.cn/zhengce/content/2016-08/08/content_5098072.htm.
[13] 姜建军. 实施“三深一土”国土资源科技创新发展战略的思考[J]. 国土资源科技管理, 2017, 34(3): 1–8
JIANG Jianjun. Thoughts on implementing the strategy of “three depths and one soil” for scientific and technological innovation and development of land and resources[J]. Scientific and technological management of land and resources, 2017, 34(3): 1–8
[14] 宋玉香, 张诗雨, 刘勇, 等. 城市地下空间智慧规划研究综述[J]. 地下空间与工程学报, 2020, 16(6): 1611–1621,1645
SONG Yuxiang, ZHANG Shiyu, LIU Yong, et al. Review on urban underground space smart planning studies[J]. Chinese journal of underground space and engineering, 2020, 16(6): 1611–1621,1645
[15] 王耀南, 安果维, 王传成, 等. 智能无人系统技术应用与发展趋势[J]. 中国舰船研究, 2022, 17(5): 9–26
WANG Yaonan, AN Guowei, WANG Chuancheng, et al. Technology application and development trend of intelligent unmanned system[J]. Chinese journal of ship research, 2022, 17(5): 9–26
[16] 王国法, 庞义辉, 任怀伟. 煤矿智能化开采模式与技术路径[J]. 采矿与岩层控制工程学报, 2020, 2(1): 013501
WANG Guofa, PANG Yihui, REN Huaiwei. Intelligent coal mining pattern and technological path[J]. Journal of mining and strata control engineering, 2020, 2(1): 013501
[17] 葛世荣, 郝尚清, 张世洪, 等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术, 2020, 48(7): 28–46
GE Shirong, HAO Shangqing, ZHANG Shihong, et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal science and technology, 2020, 48(7): 28–46
[18] 范京道, 闫振国, 李川. 基于5G技术的煤矿智能化开采关键技术探索[J]. 煤炭科学技术, 2020, 48(7): 92–97
FAN Jingdao, YAN Zhenguo, LI Chuan. Exploration of intelligent coal mining key technology based on 5G technology[J]. Coal science and technology, 2020, 48(7): 92–97
[19] 国家发展改革委, 国家能源局, 应急管理部, 等. 关于加快煤矿智能化发展的指导意见[J]. 中国安全生产, 2020, 15(3): 5
National Development and Reform Commission, National Energy Administration, Ministry of Emergency Management, et al. Guiding opinions on accelerating the development of intelligent coal mines[J]. China occupational safety and health, 2020, 15(3): 5
[20] GUO Changfang, YANG Zhen, CHANG Shuai, et al. Precise identification of coal thickness by channel wave based on a hybrid algorithm[J]. Applied sciences, 2019, 9(7): 1493.
[21] WANG Tong, SUN Jie, LIN Zhongyue, et al. Coordinated exploration model and its application to coal and coal-associated deposits in coal basins of China[J]. Acta geologica sinica - English edition, 2021, 95(4): 1346–1356.
[22] HAO Yang, WU Yu, P G R, et al. New insights on ground control in intelligent mining with internet of things[J]. Computer communications, 2020, 150: 788–798.
[23] LI Jianguo, ZHAN Kai. Intelligent mining technology for an underground metal mine based on unmanned equipment[J]. Engineering, 2018, 4(3): 381–391.
[24] WANG Guofa, XU Yongxiang, REN Huaiwei. Intelligent and ecological coal mining as well as clean utilization technology in China: review and prospects[J]. International journal of mining science and technology, 2019, 29(2): 161–169.
[25] WANG Guofa. Innovation and development of completed set equipment and technology for high efficient coal mining face in underground mine[J] Coal science and technology, 2010, 38(1): 63-68.
[26] 范京道, 王国法, 张金虎, 等. 黄陵智能化无人工作面开采系统集成设计与实践[J]. 煤炭工程, 2016, 48(1): 84–87
FAN Jingdao, WANG Guofa, ZHANG Jinhu, et al. Design and practice of integrated system for intelligent unmanned working face mining system in Huangling coal mine[J]. Coal engineering, 2016, 48(1): 84–87
[27] SU Yinao. Geosteering drilling technology and its development in China[J]. Min. Metall. Eng, 2003, 23: 4–6.
[28] BASARIR H, FERID OGE I, AYDIN O. Prediction of the stresses around main and tail gates during top coal caving by 3D numerical analysis[J]. International journal of rock mechanics and mining sciences, 2015, 76: 88–97.
[29] MASSINAEI M, JAHEDSARAVANI A, TAHERI E, et al. Machine vision based monitoring and analysis of a coal column flotation circuit[J]. Powder technology, 2019, 343: 330–341.
[30] WANG Jinhua, HUANG Zenghua. The recent technological development of intelligent mining in China[J]. Engineering, 2017, 3(4): 439–444.
[31] DONG Longjun, SUN Daoyuan, HAN Guangjie, et al. Velocity-free localization of autonomous driverless vehicles in underground intelligent mines[J]. IEEE transactions on vehicular technology, 2020, 69(9): 9292–9303.
[32] 张科学, 李首滨, 何满潮, 等. 智能化无人开采系列关键技术之一-综采智能化工作面调斜控制技术研究[J]. 煤炭科学技术, 2018, 46(1): 139–149
ZHANG Kexue, LI Shoubin, HE Manchao. Study on key technologies of intelligent unmanned coal mining series Ⅰ: study on diagonal adjustment control technology of intelligent fully mechanized coal mining face[J]. Coal science and technology, 2018, 46(1): 139–149
[33] 张科学. 综掘工作面智能化开采技术研究[J]. 煤炭科学技术, 2017, 45(7): 106–111
ZHANG Kexue. Study on intelligent mining technology of fully-mechanized heading face[J]. Coal science and technology, 2017, 45(7): 106–111
[34] 张科学, 王晓玲, 何满潮, 等. 智能化无人开采工作面适用性多层次模糊综合评价研究[J]. 采矿与岩层控制工程学报, 2021, 3(1): 47–56
ZHANG Kexue, WANG Xiaoling, HE Manchao, et al. Research on multi-level fuzzy comprehensive evaluation of the applicability of intelligent unmanned mining face[J]. Journal of mining and strata control engineering, 2021, 3(1): 47–56
[35] 黄曾华, 王峰, 张守祥. 智能化采煤系统架构及关键技术研究[J]. 煤炭学报, 2020, 45(6): 1959–1972
HUANG Zenghua, WANG Feng, ZHANG Shouxiang. Research on the architecture and key technologies of intelligent coal mining system[J]. Journal of China coal society, 2020, 45(6): 1959–1972
[36] MAYET C, HORREIN L, BOUSCAYROL A, et al. Comparison of different models and simulation approaches for the energetic study of a subway[J]. IEEE transactions on vehicular technology, 2014, 63(2): 556–565.
[37] JIM?NEZ-REDONDO J. Driverless operation solutions[J]. Mass transit, 2010, 36(3): 60–63.
[38] MOHAMMED T S, AL-AZZO W F, AKAAK M A, et al. Full automation in driverless trains: a microcontroller-based prototype[J]. International journal of advanced research in electrical, electronics and instrumentation engineering, 2014, 3(7): 10417–10422.
[39] SIEMIATYCKI M. Message in a metro: building urban rail infrastructure and image in Delhi, India[J]. International journal of urban and regional research, 2006, 30(2): 277–292.
[40] 马妍. 城市轨道交通无人驾驶系统中信号与车辆接口分析[J]. 城市轨道交通研究, 2018, 21(S1): 10–12
MA Yan. Analysis of the interface between UTO signal system and urban rail transit vehicle[J]. Urban mass transit, 2018, 21(S1): 10–12
[41] WEI Lijie, SHENG Yanzhe, DU Qingyun. Research on automatic unmanned urban rail integrated automation system[J]. Journal of physics:conference series, 2019, 1168: 022080.
[42] 杜烨. 城市轨道交通无人驾驶系统的功能需求及相关技术要点[J]. 城市轨道交通研究, 2017, 20(S1): 14–17
DU Ye. Analysis on the requirements of driverless signaling system and related technologies in urban rail transit[J]. Urban mass transit, 2017, 20(S1): 14–17
[43] LIU Huixuan, ZHAO Dongfu, LI Guohua, et al. Review on operation management mode of urban underground utility tunnel[C]//Proceedings of the 2018 International Symposium on Humanities and Social Sciences, Management and Education Engineering (HSSMEE 2018). Paris, France: Atlantis Press, 2018: 192-195.
[44] ABBAS M Z, ABU BAKER K, AYAZ M, et al. Key factors involved in pipeline monitoring techniques using robots and WSNs: comprehensive survey[J]. Journal of pipeline systems engineering and practice, 2018, 9(2): 04018001.
[45] KWAK P J, PARK S H, CHOI C H, et al. IoT(internet of things)-based underground risk assessment system surrounding water pipes in Korea[J]. International journal of control and automation, 2015, 8(11): 183–190.
[46] 王越林, 陆烨. 城市地区管道渗漏引发地面塌陷成灾机理的CFD-DEM联合计算模拟分析[J]. 土木与环境工程学报(中英文), 2021, 43(2): 60–67
WANG Yuelin, LU Ye. CFD-DEM simulation of disaster mechanism of pavement collapse caused by pipeline leakage in urban areas[J]. Journal of civil and environmental engineering, 2021, 43(2): 60–67
[47] LEE L H, RAJKUMAR R, LO L H, et al. Oil and gas pipeline failure prediction system using long range ultrasonic transducers and Euclidean-Support Vector Machines classification approach[J]. Expert systems with applications, 2013, 40(6): 1925–1934.
[48] CHENG J C P, WANG Mingzhu. Automated detection of sewer pipe defects in closed-circuit television images using deep learning techniques[J]. Automation in construction, 2018, 95: 155–171.
[49] 石纯民, 董建敏. 地下空间: 未来战争的关键战场[J]. 科学中国人, 2018(20): 74–75
SHI Chunmin, DONG Jianmin. Underground space: the key battlefield of future war[J]. Scientific Chinese, 2018(20): 74–75
[50] 刘波. 抗美援朝战争中的“地下长城”[J]. 同舟共进, 2020(12): 45–48
LIU Bo. The ‘underground great wall’ in the War to Resist US aggression and Aid Korea[J]. Forging ahead together, 2020(12): 45–48
[51] 康宁. 阿富汗战争和地下空间[J]. 浙江国土资源, 2003(1): 62–64
KANG Ning. Afghanistan war and underground space[J]. Zhejiang land & resources, 2003(1): 62–64
[52] 傅光明, 徐新文. 地下战场: 未来战争的新空间[J]. 国防科技, 2017, 38(1): 8–12
FU Guangming, XU Xinwen. Underground battlefield-a new space of the future war[J]. National defense science & technology, 2017, 38(1): 8–12
[53] LEDA J C. Defense advanced research projects agency home page. Fast lightweight autonomy (FLA) [EB/OL]. http://www.darpa.mil/program/fastlightweightqutonomy.
[54] PASCHALL S, ROSE J. Fast, lightweight autonomy through an unknown cluttered environment: distribution statement: a approved for public release; distribution unlimited[C]//2017 IEEE Aerospace Conference. Piscataway: IEEE, 2017: 1-8.
[55] 王彤, 李磊, 蒋琪. 美国“快速轻量自主”项目推进无人系统自主能力发展[J]. 无人系统技术, 2019, 2(1): 58–64
WANG Tong, LI Lei, JIANG Qi. DARPA fast lightweight autonomy program promotes unmanned system autonomy development[J]. Unmanned systems technology, 2019, 2(1): 58–64
[56] 孙雷, 韩峰. 便携式ULF/VLF机械通信天线技术的研究进展[J]. 电讯技术, 2021, 61(3): 384–390
SUN Lei, HAN Feng. Research progress of portable mechanically based antenna project for ULF/ VLF communication[J]. Telecommunication engineering, 2021, 61(3): 384–390
[57] CHUNG T. DARPA subterranean (Sub T)challenge [EB/OL]. https://www.subchallenge.com, DARPA.
[58] 高博特. “跨越险阻2021”第四届陆上无人系统挑战赛赛事通知[EB/OL]. https://www.auvsc.com/page123?article_id=1619.
Gao Bote. The 4th land-based unmanned systems challenge "over the hedge 2021" event notice[EB/OL]. https://www.auvsc.com/page123article\_id=1619
[59] 国防科技快响小组. “地下探测─2020”城市地下空间内物体探测系统挑战赛, “深度透视─2020”城市地下空间结构探测系统挑战赛[EB/OL]. https://ibook.antpedia.com/x/491292.html.
Defense Science and Technology Express Team. "Underground detection - 2020" urban underground space object detection system challenge, "deep perspective - 2020" urban underground space structure detection system challenge[EB/OL]. https://ibook.antpedia.com/x/491292.html.
[60] KENDOUL F. Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems[J]. Journal of field robotics, 2012, 29(2): 315–378.
[61] 李新年, 李清华, 王常虹, 等. 美国地下领域无人系统发展现状及启示[J]. 导航定位与授时, 2021, 8(6): 52–59
LI Xinnian, LI Qinghua, WANG Changhong, et al. Development and enlightenment of unmanned underground system in the United States[J]. Navigation positioning and timing, 2021, 8(6): 52–59
[62] FOROOSHANI A E, BASHIR S, MICHELSON D G, et al. A survey of wireless communications and propagation modeling in underground mines[J]. IEEE communications surveys & tutorials, 2013, 15(4): 1524–1545.
[63] BANDYOPADHYAY L K, CHAULYA S K, MISHRA P K. Wireless communication in underground mines[M]. Boston, MA: Springer US, 2010.
[64] 胡青松, 杨维, 丁恩杰, 等. 煤矿应急救援通信技术的现状与趋势[J]. 通信学报, 2019, 40(5): 163–179
HU Qingsong, YANG Wei, DING Enjie, et al. State-of-the-art and trend of emergency rescue communication technologies for coal mine[J]. Journal on communications, 2019, 40(5): 163–179
[65] YARKAN S, GUZELGOZ S, ARSLAN H, et al. Underground mine communications: a survey[J]. IEEE communications surveys & tutorials, 2009, 11(3): 125–142.
[66] THOMESSE J P. Fieldbus technology in industrial automation[J]. Proceedings of the IEEE, 2005, 93(6): 1073–1101.
[67] LI Jianqiang, YU F R, DENG Genqiang, et al. Industrial Internet: a survey on the enabling technologies, applications, and challenges[J]. IEEE communications surveys & tutorials, 2017, 19(3): 1504–1526.
[68] 张喜萍. 基于工业以太网的全数字矿井视频监控系统[J]. 煤矿安全, 2018, 49(12): 112–114
ZHANG Xiping. Digital mine video monitoring system based on industrial Ethernet[J]. Safety in coal mines, 2018, 49(12): 112–114
[69] JASPERNEITE J, FELD J. PROFINET: an integration platform for heterogeneous industrial communication systems[C]//2005 IEEE Conference on Emerging Technologies and Factory Automation. Piscataway: IEEE, 2006: 8 -22.
[70] PATRI A, NAYAK A, JAYANTHU S. Wireless communication systems for underground mines - a critical appraisal[J]. International Journal of Engineering Trends and Technology, 2013, 4(7): 3149–3153.
[71] RANJAN A, SAHU H B, MISRA P. Modeling and measurements for wireless communication networks in underground mine environments[J]. Measurement, 2020, 149: 106980.
[72] CHEN Wei, WANG Xuzhou. Coal mine safety intelligent monitoring based on wireless sensor network[J]. IEEE sensors journal, 2021, 21(22): 25465–25471.
[73] ALDOSSARI S M, CHEN K C. Machine learning for wireless communication channel modeling: an overview[J]. Wireless personal communications, 2019, 106(1): 41–70.
[74] 孙彦景, 吴天琦, 施文娟, 等. 无线透地通信理论与关键技术研究[J]. 工矿自动化, 2017, 43(9): 46–53
SUN Yanjing, WU Tianqi, SHI Wenjuan, et al. Research on theory and key technologies of wireless through-the-earth communication[J]. Industry and mine automation, 2017, 43(9): 46–53
[75] 郝建军, 孙晓晨. 几种透地通信技术的分析与对比[J]. 湖南科技大学学报(自然科学版), 2014, 29(1): 59–63
HAO Jianjun, SUN Xiaochen. Analysis and comparison of several through-the-earth communication technologies for mining[J]. Journal of Hunan University of Science & Technology (natural science edition), 2014, 29(1): 59–63
[76] CARRE?O J, SILVA L, NEVES S, et al. Through-the-earth (TTE) communications for underground mines[J]. Journal of communication and information systems, 2016, 31(1): 164–176.
[77] 丁宏. DARPA机械天线项目或掀起军事通信革命[J]. 现代军事, 2017(4): 71–73
DING Hong. DARPA mechanical antenna project or military communication revolution[J]. Conmilit, 2017(4): 71–73
[78] 崔勇, 吴明, 宋晓, 等. 小型低频发射天线的研究进展[J]. 物理学报, 2020, 69(20): 171–183
CUI Yong, WU Ming, SONG Xiao, et al. Research progress of small low-frequency transmitting antenna[J]. Acta physica sinica, 2020, 69(20): 171–183
[79] BICKFORD J A, MCNABB R S, WARD P A, et al. Low frequency mechanical antennas: electrically short transmitters from mechanically-actuated dielectrics[C]//2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Piscataway: IEEE, 2017: 1475-1476.
[80] BICKFORD J A, DUWEL A E, WEINBERG M S, et al. Performance of electrically small conventional and mechanical antennas[J]. IEEE transactions on antennas and propagation, 2019, 67(4): 2209–2223.
[81] XU Jianchun, CAO Jinqing, GUO Menghao, et al. Metamaterial mechanical antenna for very low frequency wireless communication[J]. Advanced composites and hybrid materials, 2021, 4(3): 761–767.
[82] CHU L J. Physical limitations of omni-directional antennas[J]. Journal of applied physics, 1948, 19(12): 1163–1175.
[83] BURCH H C, GARRAUD A, MITCHELL M F, et al. Experimental generation of ELF radio signals using a rotating magnet[J]. IEEE transactions on antennas and propagation, 2018, 66(11): 6265–6272.
[84] YANG Guangying, DU Jianke, WANG Ji, et al. Frequency dependence of electromagnetic radiation from a finite vibrating piezoelectric body[J]. Mechanics research communications, 2018, 93: 163–168.
[85] YANG Shaolong, XU Jianchun, GUO Menghao, et al. Progress on very/ultra low frequency mechanical antennas[J]. ES materials & manufacturing, 2021: 1-12.
[86] SUN Zhi, AKYILDIZ I F. Magnetic induction communications for wireless underground sensor networks[J]. IEEE transactions on antennas and propagation, 2010, 58(7): 2426–2435.
[87] AKYILDIZ I F, SUN Zhi, VURAN M C. Signal propagation techniques for wireless underground communication networks[J]. Physical communication, 2009, 2(3): 167–183.
[88] AGBINYA J I. Investigation of near field inductive communication system models, channels and experiments[J]. Progress in electromagnetics research B, 2013, 49: 129–153.
[89] 崔勇, 王琛, 宋晓. 基于驻极体材料的机械天线式低频通信系统仿真研究[J]. 自动化学报, 2021, 47(6): 1335–1342
CUI Yong, WANG Chen, SONG Xiao. Simulation and analysis of mechanical antenna low frequency communication system based on electret material[J]. Acta automatica sinica, 2021, 47(6): 1335–1342
[90] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析[J]. 物理学报, 2019, 68(18): 314–324
SHI Wei, ZHOU Qiang, LIU Bin. Performance analysis of spinning magnet as mechanical antenna[J]. Acta physica sinica, 2019, 68(18): 314–324
[91] DOMINGO M C. Magnetic induction for underwater wireless communication networks[J]. IEEE transactions on antennas and propagation, 2012, 60(6): 2929–2939.
[92] 王晓煜, 张雯厚, 孙丽慧, 等. 超低频机械天线通信模型及信号接收线圈研究[J]. 电子学报, 2021, 49(4): 824–832
WANG Xiaoyu, ZHANG Wenhou, SUN Lihui, et al. Research on super-low frequency mechanical antenna model and experimental study of magnetic sensor coil[J]. Acta electronica sinica, 2021, 49(4): 824–832
[93] WANG Chen, CUI Yong, WEI Minsong. Mechanically-rotating electret ULF/VLF antenna transmitter[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. Piscataway: IEEE, 2019: 1383-1384.
[94] LIANG Bowen, CUI Yong, SONG Xiao, et al. Multi-block electret-based mechanical antenna model for low frequency communication[J]. International journal of modeling, simulation, and scientific computing, 2019, 10(5): 1950036.
[95] FAWOLE O C, TABIB-AZAR M. An electromechanically modulated permanent magnet antenna for wireless communication in harsh electromagnetic environments[J]. IEEE transactions on antennas and propagation, 2017, 65(12): 6927–6936.
[96] BARANI N, SARABANDI K. Mechanical antennas: emerging solution for very-low frequency (VLF) communication[C]//2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Piscataway: IEEE, 2019: 95-96.
[97] KEMP M A, FRANZI M, HAASE A, et al. A high Q piezoelectric resonator as a portable VLF transmitter[J]. Nature communications, 2019, 10: 1715.
[98] DONG Cunzheng, HE Yifan, LI Menghui, et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas[J]. IEEE antennas and wireless propagation letters, 2020, 19(3): 398–402.
[99] NAN Tianxiang, LIN H, GAO Yuan, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas[J]. Nature communications, 2017, 8: 296.
[100] REZAEI H, KHILKEVICH V, YONG Shaohui, et al. Mechanical magnetic field generator for communication in the ULF range[J]. IEEE transactions on antennas and propagation, 2020, 68(3): 2332–2339.
[101] SELVIN S, SRINIVAS PRASAD M N, HUANG Yikun, et al. Spinning magnet antenna for VLF transmitting[C]//2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Piscataway: IEEE, 2017: 1477-1478.
[102] 周强, 姚富强, 施伟, 等. 机械式低频天线机理及其关键技术研究[J]. 中国科学:技术科学, 2020, 50(1): 69–84
ZHOU Qiang, YAO Fuqiang, SHI Wei, et al. Research on mechanism and key technology of mechanical antenna for a low-frequency transmission[J]. Scientia sinica (technologica), 2020, 50(1): 69–84
[103] RILEY J M, ENDSLEY M R, BOLSTAD C A, et al. Collaborative planning and situation awareness in Army command and control[J]. Ergonomics, 2006, 49(12/13): 1139–1153.
[104] 陈军, 张岳, 陈晓威, 等. 基于模糊灰色认知图的复杂战场智能态势感知建模方法[J]. 兵工学报, 2022, 43(5): 1093–1106
CHEN Jun, ZHANG Yue, CHEN Xiaowei, et al. FGCM-based modeling method of intelligent situation awareness in complex battlefield[J]. Acta armamentarii, 2022, 43(5): 1093–1106
[105] 孔亦思, 胡晓峰, 朱丰, 等. 战场态势感知中的注意力机制探析[J]. 系统仿真学报, 2017, 29(10): 2233–2240,2246
KONG Yisi, HU Xiaofeng, ZHU Feng, et al. Attention mechanism in battlefield situation awareness[J]. Journal of system simulation, 2017, 29(10): 2233–2240,2246
[106] 陈军, 梁晶, 程龙, 等. 基于FCM的多无人机协同攻击决策建模方法[J]. 航空学报, 2022, 43(7): 325526
CHEN Jun, LIANG Jing, CHENG Long, et al. Cooperative attack decision modeling method of multiple UAVs based on FCM[J]. Acta aeronautica et astronautica sinica, 2022, 43(7): 325526
[107] ENDSLEY M R, ROBERTSON M M. Situation awareness in aircraft maintenance teams[J]. International journal of industrial ergonomics, 2000, 26(2): 301–325.
[108] 唐帅文, 周志杰, 姜江, 等. 考虑扰动的无人机集群协同态势感知一致性评估[J]. 航空学报, 2020, 41(S2): 724233
TANG Shuaiwen, ZHOU Zhijie, JIANG Jiang, et al. Consensus evaluation of UAV swarm cooperative situation awareness considering perturbation[J]. Acta aeronautica et astronautica sinica, 2020, 41(S2): 724233
[109] BASHIRI B, MANN D D. Automation and the situation awareness of drivers in agricultural semi-autonomous vehicles[J]. Biosystems engineering, 2014, 124: 8–15.
[110] BASS T, GRUBER D. A glimpse into the future of id[J]. The magazine of USENIX & SAGE, 1999, 24(3): 40–45.
[111] 龚俭, 臧小东, 苏琪, 等. 网络安全态势感知综述[J]. 软件学报, 2017, 28(4): 1010–1026
GONG Jian, ZANG Xiaodong, SU Qi, et al. Survey of network security situation awareness[J]. Journal of software, 2017, 28(4): 1010–1026
[112] 张红斌, 尹彦, 赵冬梅, 等. 基于威胁情报的网络安全态势感知模型[J]. 通信学报, 2021, 42(6): 182–194
ZHANG Hongbin, YIN Yan, ZHAO Dongmei, et al. Network security situational awareness model based on threat intelligence[J]. Journal on communications, 2021, 42(6): 182–194
[113] ERBACHER R F, FRINCKE D A, WONG P C, et al. A multi-phase network situational awareness cognitive task analysis[J]. Information visualization, 2010, 9(3): 204–219.
[114] FERGUSON D C, WORDEN S P, HASTINGS D E. The space weather threat to situational awareness, communications, and positioning systems[J]. IEEE transactions on plasma science, 2015, 43(9): 3086–3098.
[115] 尤政, 赵开春. 仿生偏振特征感知与导航信息融合的空间态势感知系统[J]. 遥感学报, 2018, 22(6): 917–925
YOU Zheng, ZHAO Kaichun. Space situational awareness system based on bionic polarization feature sensing and navigation information fusion[J]. Journal of remote sensing, 2018, 22(6): 917–925
[116] COHEN G, AFSHAR S, MORREALE B, et al. Event-based sensing for space situational awareness[J]. The journal of the astronautical sciences, 2019, 66(2): 125–141.
[117] DELANDE E, FRUEH C, FRANCO J, et al. Novel multi-object filtering approach for space situational awareness[J]. Journal of guidance, control, and dynamics, 2018, 41(1): 59–73.
[118] ENDSLEY M R. Toward a theory of situation awareness in dynamic systems[J]. Human factors:the journal of the human factors and ergonomics society, 1995, 37(1): 32–64.
[119] LENDERS V, TANNER A, BLARER A. Gaining an edge in cyberspace with advanced situational awareness[J]. IEEE security & privacy, 2015, 13(2): 65–74.
[120] CHIAPPE D, RORIE R C, MORGAN C A, et al. A situated approach to the acquisition of shared SA in team contexts[J]. Theoretical issues in ergonomics science, 2014, 15(1): 69–87.
[121] STANTON N A, STEWART R, HARRIS D, et al. Distributed situation awareness in dynamic systems: theoretical development and application of an ergonomics methodology[J]. Ergonomics, 2006, 49(12/13): 1288–1311.
[122] 高杨, 李东生, 程泽新. 无人机分布式集群态势感知模型研究[J]. 电子与信息学报, 2018, 40(6): 1271–1278
GAO Yang, LI Dongsheng, CHENG Zexin. UAV distributed swarm situation awareness model[J]. Journal of electronics & information technology, 2018, 40(6): 1271–1278
[123] SALMON P M, STANTON N A, WALKER G H. Distributed situation awareness and vehicle automation[M]. Boca Raton, FL: CRC Press, 2020: 293-317.
[124] SALAS E, SHUFFLER M L, THAYER A L, et al. Understanding and improving teamwork in organizations: a scientifically based practical guide[J]. Human resource management, 2015, 54(4): 599–622.
[125] SANER L D, BOLSTAD C A, GONZALEZ C, et al. Measuring and predicting shared situation awareness in teams[J]. Journal of cognitive engineering and decision making, 2009, 3(3): 280–308.
[126] 邵振峰, 左肖龙, 邵焱明, 等. 无人遥感平台场景感知关键技术与应用[J]. 测绘地理信息, 2023, 48(6): 1–7
SHAO Zhenfeng, ZUO Xiaolong, SHAO Yanming, et al. Key technologies and applications of scene perception in unmanned remote sensing platform[J]. Journal of geomatics, 2023, 48(6): 1–7
[127] SHU Yufei, FURUTA K. An inference method of team situation awareness based on mutual awareness[J]. Cognition, technology & work, 2005, 7(4): 272–287.
[128] KOKAR M M, ENDSLEY M R. Situation awareness and cognitive modeling[J]. IEEE intelligent systems, 2012, 27(3): 91–96.
[129] 俞肇元, 袁林旺, 吴明光, 等. 地理学视角下地理信息的分类与描述[J]. 地球信息科学学报, 2022, 24(1): 17–24
YU Zhaoyuan, YUAN Linwang, WU Mingguang, et al. Classification and description of geographic information from the perspective of geography[J]. Journal of geo-information science, 2022, 24(1): 17–24
[130] TABREZ A, LUEBBERS M B, HAYES B. Descriptive and prescriptive visual guidance to improve shared situational awareness in human-robot teaming[C]//Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems. New York: ACM, 2022: 1256-1264.
[131] 王永利, 谢策, 张永亮, 等. 态势认知总体框架及其关键技术[J]. 指挥信息系统与技术, 2021, 12(3): 7–12
WANG Yongli, XIE Ce, ZHANG Yongliang, et al. Framework and its key technology of situation cognition[J]. Command information system and technology, 2021, 12(3): 7–12
[132] YUAN Faxi, FAN Chao, FARAHMAND H, et al. Smart flood resilience: harnessing community-scale big data for predictive flood risk monitoring, rapid impact assessment, and situational awareness[J]. Environmental research:infrastructure and sustainability, 2022, 2(2): 025006.
[133] PAL A, WANG Junbo, WU Yilang, et al. Social media driven big data analysis for disaster situation awareness: a tutorial[J]. IEEE transactions on big data, 2023, 9(1): 1–21.
[134] WANG Qi, BU Siqi, HE Zhengyou, et al. Toward the prediction level of situation awareness for electric power systems using CNN-LSTM network[J]. IEEE transactions on industrial informatics, 2021, 17(10): 6951–6961.
[135] 简玲, 叶天鹏, 林祥, 等. 多源融合的大数据网络安全态势感知平台研究与探索[J]. 信息网络安全, 2020(S2): 139–143
JIAN Ling, YE Tianpeng, LIN Xiang, et al. Research and exploration on security situation awareness platform of big data network based on multi-source fusion[J]. Netinfo security, 2020(S2): 139–143
[136] FAN Chao, JIANG Yucheng, MOSTAFAVI A. Social sensing in disaster city digital twin: integrated textual–visual–geo framework for situational awareness during built environment disruptions[J]. Journal of management in engineering, 2020, 36(3): 04020002.
[137] KODITUWAKKU H A D E, KELLER A, GREGOR J. InSight2: a modular visual analysis platform for network situational awareness in large-scale networks[J]. Electronics, 2020, 9(10): 1747.
[138] 申良强, 刘健, 任煜, 等. 复杂阵地态势可视化关键技术研究[J]. 火力与指挥控制, 2019, 44(7): 147–150
SHEN Liangqiang, LIU Jian, REN Yu, et al. Research on the key techniques of complex position about situation visualization[J]. Fire control & command control, 2019, 44(7): 147–150
[139] 张昊. 通用战场态势可视化系统的设计及实现[J]. 计算机工程与应用, 2018, 54(17): 258–265
ZHANG Hao. Design and implementation of general battlefield visualization system[J]. Computer engineering and applications, 2018, 54(17): 258–265
[140] 黄亚锋, 李旭东, 张航峰. 战场态势多尺度表达研究[J]. 系统仿真学报, 2018, 30(2): 452–458,464
HUANG Yafeng, LI Xudong, ZHANG Hangfeng. Multi-scale representation of battlefield situation[J]. Journal of system simulation, 2018, 30(2): 452–458,464
[141] 刘靖旭, 宋留勇, 王潇雨. 网络空间态势的多尺度表达研究[J]. 中国电子科学研究院学报, 2019, 14(11): 1202–1206
LIU Jingxu, SONG Liuyong, WANG Xiaoyu. Study on the multi-scale representation of network space situation[J]. Journal of China academy of electronics and information technology, 2019, 14(11): 1202–1206
[142] ZHUO X, KURZ F, REINARTZ P. Fusion of multi-view and multi-scale aerial imagery for real-time situation awareness applications[J]. The international archives of the photogrammetry, remote sensing and spatial information sciences, 2015, XL-1/W4: 201–206.
[143] 刘嵩, 武志强, 游雄, 等. 基于兵棋推演的综合战场态势多尺度表达[J]. 测绘科学技术学报, 2012, 29(5): 382–385,390
LIU Song, WU Zhiqiang, YOU Xiong, et al. Multi-scale expression of integrated battlefield situation based on wargaming[J]. Journal of geomatics science and technology, 2012, 29(5): 382–385,390
[144] CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE transactions on robotics, 2016, 32(6): 1309–1332.
[145] DELMERICO J, SCARAMUZZA D. A benchmark comparison of monocular visual-inertial odometry algorithms for flying robots[C]//2018 IEEE International Conference on Robotics and Automation . Piscataway: IEEE, 2018: 2502-2509.
[146] ALISMAIL H, KAESS M, BROWNING B, et al. Direct visual odometry in low light using binary descriptors[J]. IEEE robotics and automation letters, 2017, 2(2): 444–451.
[147] SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP[C]//Robotics: Science and Systems V. Robotics: Science and Systems Foundation, 2009: 1-8.
[148] MAGNUSSON M, LILIENTHAL A, DUCKETT T. Scan registration for autonomous mining vehicles using 3D-NDT[J]. Journal of field robotics, 2007, 24(10): 803–827.
[149] ST?CKLER J, BEHNKE S. Multi-resolution surfel maps for efficient dense 3D modeling and tracking[J]. Journal of visual communication and image representation, 2014, 25(1): 137–147.
[150] SCARAMUZZA D, FRAUNDORFER F. Visual odometry tutorial[J]. IEEE robotics & automation magazine, 2011, 18(4): 80–92.
[151] OSKIPER T, ZHU Zhiwei, SAMARASEKERA S, et al. Visual odometry system using multiple stereo cameras and inertial measurement unit[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2007: 1-8.
[152] JONES E S, SOATTO S. Visual-inertial navigation, mapping and localization: a scalable real-time causal approach[J]. The international journal of robotics research, 2011, 30(4): 407–430.
[153] STEINER T J, RASMUSSEN S A, DEBITETTO P A, et al. Unifying inertial and relative solutions for planetary hopper navigation[C]//2012 IEEE Aerospace Conference. Piscataway: IEEE, 2012: 1-8.
[154] GOLDBERG S B, MATTHIES L. Stereo and IMU assisted visual odometry on an OMAP3530 for small robots[C]//CVPR 2011 WORKSHOPS. Piscataway: IEEE, 2011: 169-176.
[155] YAO Erliang, ZHANG Hexin, SONG Haitao, et al. Fast and robust visual odometry with a low-cost IMU in dynamic environments[J]. Industrial robot:the international journal of robotics research and application, 2019, 46(6): 882–894.
[156] MOURIKIS A I, ROUMELIOTIS S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//Proceedings 2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2007: 3565-3572.
[157] LI Mingyang, MOURIKIS A I. High-precision, consistent EKF-based visual-inertial odometry[J]. The international journal of robotics research, 2013, 32(6): 690–711.
[158] 樊真权. 地下环境几何建模与移动机器人自主探索策略研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
FAN Zhenquan. Research on geometric modeling and autonomous exploration strategies of mobile robot for underground environment[D]. Harbin: Harbin Institute of Technology, 2021.
[159] ?ZASLAN T, LOIANNO G, KELLER J, et al. Autonomous navigation and mapping for inspection of penstocks and tunnels with MAVs[J]. IEEE robotics and automation letters, 2017, 2(3): 1740–1747.
[160] NIEUWENHUISEN M, QUENZEL J, BEUL M, et al. ChimneySpector: autonomous MAV-based indoor chimney inspection employing 3D laser localization and textured surface reconstruction[C]//2017 International Conference on Unmanned Aircraft Systems . Piscataway: IEEE, 2017: 278-285.
[161] JUNG S, LEE H, SHIM D H, et al. Collision-free local planner for unknown subterranean navigation[J]. ETRI journal, 2021, 43(4): 580–593.
[162] STEINER T J, TRUAX R D, FREY K. A vision-aided inertial navigation system for agile high-speed flight in unmapped environments: distribution statement A: approved for public release, distribution unlimited[C]//2017 IEEE Aerospace Conference. Piscataway: IEEE, 2017: 1-10.
[163] HOWARD A, PARKER L E, SUKHATME G S. Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection[J]. The international journal of robotics research, 2006, 25(5/6): 431–447.
[164] HSIEH M A, COWLEY A, KELLER J F, et al. Adaptive teams of autonomous aerial and ground robots for situational awareness[J]. Journal of field robotics, 2007, 24(11/12): 991–1014.
[165] BALAKIRSKY S, CARPIN S, KLEINER A, et al. Towards heterogeneous robot teams for disaster mitigation: results and performance metrics from RoboCup rescue[J]. Journal of field robotics, 2007, 24(11/12): 943–967.
[166] BUTZKE J, DANIILIDIS K, KUSHLEYEV A, et al. The University of Pennsylvania MAGIC 2010 multi-robot unmanned vehicle system[J]. Journal of field robotics, 2012, 29(5): 745–761.
[167] GREGORY J, FINK J, STUMP E, et al. Application of multi-robot systems to disaster-relief scenarios with limited communication[M]. Cham: Springer, 2016: 639-653.
[168] ROU?EK T, PECKA M, ???EK P, et al. DARPA subterranean challenge: multi-robotic exploration of underground environments[C]//Mazal J, Fagiolini A, Vasik P. International Conference on Modelling and Simulation for Autonomous Systems. Cham: Springer, 2020: 274-290.
[169] LIU Yugang, NEJAT G. Robotic urban search and rescue: a survey from the control perspective[J]. Journal of intelligent & robotic systems, 2013, 72(2): 147–165.
[170] RECCHIUTO C T, SGORBISSA A. Post-disaster assessment with unmanned aerial vehicles: a survey on practical implementations and research approaches[J]. Journal of field robotics, 2018, 35(4): 459–490.
[171] LI Jianqiang, DENG Genqiang, LUO Chengwen, et al. A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems[J]. IEEE transactions on vehicular technology, 2016, 65(12): 9585–9596.
[172] MILLER I D, CLADERA F, COWLEY A, et al. Mine tunnel exploration using multiple quadrupedal robots[J]. IEEE robotics and automation letters, 2020, 5(2): 2840–2847.
[173] BOUMAN A, GINTING M F, ALATUR N, et al. Autonomous spot: long-range autonomous exploration of extreme environments with legged locomotion[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems . Piscataway: IEEE, 2021: 2518-2525.
[174] QIN Hailong, MENG Zehui, MENG Wei, et al. Autonomous exploration and mapping system using heterogeneous UAVs and UGVs in GPS-denied environments[J]. IEEE transactions on vehicular technology, 2019, 68(2): 1339–1350.
[175] MASCARICH F, KHATTAK S, PAPACHRISTOS C, et al. A multi-modal mapping unit for autonomous exploration and mapping of underground tunnels[C]//2018 IEEE aerospace conference. Montana: IEEE, 2018: 1-7.
[176] TARDIOLI D, RIAZUELO L, SECO T, et al. A robotized dumper for debris removal in tunnels under construction[C]//Ollero A, Sanfeliu A, Montano L, et al. Iberian Robotics conference. Cham: Springer, 2018: 126-139.
[177] EBADI K, CHANG Yun, PALIERI M, et al. LAMP: large-scale autonomous mapping and positioning for exploration of perceptually-degraded subterranean environments[C]//2020 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2020: 80-86.
[178] KIM S K, BOUMAN A, SALHOTRA G, et al. PLGRIM: hierarchical value learning for large-scale exploration in unknown environments[J]. Proceedings of the international conference on automated planning and scheduling, 2021, 31: 652–662.
[179] DANG T, TRANZATTO M, KHATTAK S, et al. Graph-based subterranean exploration path planning using aerial and legged robots[J]. Journal of field robotics, 2020, 37(8): 1363–1388.
[180] OHRADZANSKY M T, MILLS A B, RUSH E R, et al. Reactive control and metric-topological planning for exploration[C]//2020 IEEE International Conference on Robotics and Automation . Piscataway: IEEE, 2020: 4073-4079.

备注/Memo

收稿日期:2023-04-17。
基金项目:科技部科技创新2030—“新一代人工智能”重大项目(2020AAA0107300);中国高校产学研创新基金项目(2021ZYA02011).
作者简介:王军,教授,博士生导师,中国矿业大学科学技术研究院副院长、江苏省智能感知与无人系统创新平台主任、人工智能系主任,江苏省双创计划“科技副总” ,兼任教育部高等学校创新方法教学指导分委员会委员、中国人工智能学会认知系统与信息处理专业委员会副主任,主要研究方向为智能机器人与无人系统。主持和参与国家科技重大专项、国家自然科学基金项目、教育部人文社会科学基金项目、江苏省自然科学基金项目、企事业委托项目等20余项,授权PCT专利、发明专利、软件著作权等31项。发表学术论文60余篇,出版专著及教材6部。E-mail:jrobot@126.com;王佳慧,博士研究生,主要研究方向为地下空间无人集群自主控制与协同避障。E-mail:wjh371522@163.com;吴保磊,副教授,主要研究方向为集群控制、机器视觉。主持国防项目1项、中央高校基本科研业务费项目、校实验技术开发项目各1项,授权发明专利5项、软件著作权3项。发表学术论文3篇。E-mail:4092@cumt.edu.cn
通讯作者:吴保磊. E-mail:4092@cumt.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com