[1]姚鑫亚,陈鹤.基于扩张状态观测器的双摆吊车分层滑模控制[J].智能系统学报,2024,19(2):344-352.[doi:10.11992/tis.202204003]
 YAO Xinya,CHEN He.Hierarchical sliding mode control of a double pendulum crane with an extended state observer[J].CAAI Transactions on Intelligent Systems,2024,19(2):344-352.[doi:10.11992/tis.202204003]
点击复制

基于扩张状态观测器的双摆吊车分层滑模控制

参考文献/References:
[1] YE Huawen. Stabilization of uncertain feedforward nonlinear systems with application to underactuated systems[J]. IEEE transactions on automatic control, 2019, 64(8): 3484–3491.
[2] THAKAR P S, TRIVEDI P K, BANDYOPADHYAY B, et al. A new nonlinear control for asymptotic stabilization of a class of underactuated systems: an implementation to slosh-container problem[J]. IEEE/ASME transactions on mechatronics, 2017, 22(2): 1082–1092.
[3] 何杭轩, 段海滨, 张秀林, 等. 基于扩张鸽群优化的舰载无人机横侧向着舰自主控制[J]. 智能系统学报, 2022, 17(1): 151–157
HE Hangxuan, DUAN Haibin, ZHANG Xiulin, et al. Lateral automatic carrier landing control based on expanded pigeon inspired optimization[J]. CAAI transactions on intelligent systems, 2022, 17(1): 151–157
[4] STEWART W, WEISLER W, ANDERSON M, et al. Dynamic modeling of passively draining structures for aerial-aquatic unmanned vehicles[J]. IEEE journal of oceanic engineering, 2020, 45(3): 840–850.
[5] DING Caiwu, LU Lu. A tilting-rotor unmanned aerial vehicle for enhanced aerial locomotion and manipulation capabilities: design, control, and applications[J]. IEEE/ASME transactions on mechatronics, 2021, 26(4): 2237–2248.
[6] 王琥, 胡立坤, 谭颖. PSO优化的六自由度机械臂全局快速终端滑模控制[J]. 智能系统学报, 2017, 12(2): 266–271
WANG Hu, HU Likun, TAN Ying. A PSO-based global fast terminal sliding mode controller for 6-DOF manipulators[J]. CAAI transactions on intelligent systems, 2017, 12(2): 266–271
[7] BARBAZZA L, ZANOTTO D, ROSATI G, et al. Design and optimal control of an underactuated cable-driven micro-macro robot[J]. IEEE robotics and automation letters, 2017, 2(2): 896–903.
[8] 衣淳植, 郭浩, 丁振, 等. 下肢外骨骼研究进展及关节运动学解算综述[J]. 智能系统学报, 2018, 13(6): 878–888
YI Chunzhi, GUO Hao, DING Zhen, et al. Research progress of lower-limb exoskeleton and joint kinematics calculation[J]. CAAI transactions on intelligent systems, 2018, 13(6): 878–888
[9] SUN Wei, LIN J W, SU Shunfeng, et al. Reduced adaptive fuzzy decoupling control for lower limb exoskeleton[J]. IEEE transactions on cybernetics, 2021, 51(3): 1099–1109.
[10] KIM J, LEE D, KISS B, et al. An adaptive unscented Kalman filter with selective scaling (AUKF-SS) for overhead cranes[J]. IEEE transactions on industrial electronics, 2021, 68(7): 6131–6140.
[11] CHEN He, SUN Ning. Nonlinear control of underactuated systems subject to both actuated and unactuated state constraints with experimental verification[J]. IEEE transactions on industrial electronics, 2020, 67(9): 7702–7714.
[12] RAUSCHER F, SAWODNY O. Modeling and control of tower cranes with elastic structure[J]. IEEE transactions on control systems technology, 2021, 29(1): 64–79.
[13] WU T S, KARKOUB M, WANG Huiwei, et al. Robust tracking control of MIMO underactuated nonlinear systems with dead-zone band and delayed uncertainty using an adaptive fuzzy control[J]. IEEE transactions on fuzzy systems, 2017, 25(4): 905–918.
[14] FU Yu, SUN Ning, YANG Tong, et al. Adaptive coupling anti-swing tracking control of underactuated dual boom crane systems[J]. IEEE transactions on systems, man, and cybernetics:systems, 2022, 52(7): 4697–4709.
[15] CAI Panpan, CHANDRASEKARAN I, ZHENG Jianmin, et al. Automatic path planning for dual-crane lifting in complex environments using a prioritized multiobjective PGA[J]. IEEE transactions on industrial informatics, 2018, 14(3): 829–845.
[16] YANG Tong, SUN Ning, CHEN He, et al. Motion trajectory-based transportation control for 3-D boom cranes: analysis, design, and experiments[J]. IEEE transactions on industrial electronics, 2019, 66(5): 3636–3646.
[17] RAMLI L, MOHAMED Z, JAAFAR H I. A neural network-based input shaping for swing suppression of an overhead crane under payload hoisting and mass variations[J]. Mechanical systems and signal processing, 2018, 107: 484–501.
[18] ZHANG Menghua, MA Xin, SONG Rui, et al. Adaptive proportional-derivative sliding mode control law with improved transient performance for underactuated overhead crane systems[J]. IEEE/CAA journal of automatica sinica, 2018, 5(3): 683–690.
[19] FRIKHA S, DJEMEL M, DERBEL N. A new adaptive neuro-sliding mode control for gantry crane[J]. International journal of control, automation and systems, 2018, 16(2): 559–565.
[20] ZHANG Shengzeng, HE Xiongxiong, CHEN Qiang. Energy coupled-dissipation control for 3-dimensional overhead cranes[J]. Nonlinear dynamics, 2020, 99(3): 2097–2107.
[21] WU Xianqing, HE Xiongxiong. Nonlinear energy-based regulation control of three-dimensional overhead cranes[J]. IEEE transactions on automation science and engineering, 2017, 14(2): 1297–1308.
[22] WU Xianqing, XU Kexin, LEI Meizhen, et al. Disturbance-compensation-based continuous sliding mode control for overhead cranes with disturbances[J]. IEEE transactions on automation science and engineering, 2020, 17(4): 2182–2189.
[23] CHWA D. Sliding-mode-control-based robust finite-time antisway tracking control of 3-D overhead cranes[J]. IEEE transactions on industrial electronics, 2017, 64(8): 6775–6784.
[24] AGUIAR C, LEITE D, PEREIRA D, et al. Nonlinear modeling and robust LMI fuzzy control of overhead crane systems[J]. Journal of the Franklin Institute, 2021, 358(2): 1376–1402.
[25] YAVUZ H, BELLER S. An intelligent serial connected hybrid control method for gantry cranes[J]. Mechanical systems and signal processing, 2021, 146: 107011.
[26] OUYANG Huimin, TIAN Zheng, YU Lili, et al. Motion planning approach for payload swing reduction in tower cranes with double-pendulum effect[J]. Journal of the Franklin Institute, 2020, 357(13): 8299–8320.
[27] CHEN He, FANG Yongchun, SUN Ning. A swing constrained time-optimal trajectory planning strategy for double pendulum crane systems[J]. Nonlinear dynamics, 2017, 89(2): 1513–1524.
[28] TIAN Zheng, YU Lili, OUYANG Huimin, et al. Transportation and swing reduction for double-pendulum tower cranes using partial enhanced-coupling nonlinear controller with initial saturation[J]. ISA transactions, 2021, 112: 122–136.
[29] SUN Ning, YANG Tong, FANG Yongchun, et al. Transportation control of double-pendulum cranes with a nonlinear quasi-PID scheme: design and experiments[J]. IEEE transactions on systems, man, and cybernetics:systems, 2019, 49(7): 1408–1418.
[30] GUO Baozhu, ZHAO Zhiliang. On the convergence of an extended state observer for nonlinear systems with uncertainty[J]. Systems & control letters, 2011, 60(6): 420–430.

备注/Memo

收稿日期:2022-04-02。
基金项目:国家自然科学基金项目(62373134, 61903120, U20A20198);河北省自然科学基金项目(F2020202006);辽宁省重点科技创新基地联合开放基金暨机器人学国家重点实验室联合开放基金项目(2022-KF-22-09).
作者简介:姚鑫亚,硕士研究生,主要研究方向为欠驱动桥式吊车控制。E-mail:202032803058@stu.hebut.edu.cn;陈鹤,副教授,主要研究方向为欠驱动机器人控制、轮式移动机器人轨迹规划。主持国家自然科学基金面上项目、青年项目和河北省自然科学基金青年科学基金等项目10余项。发表学术论文40余篇。E-mail:chenh@hebut.edu.cn
通讯作者:陈鹤. E-mail:chenh@hebut.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com