[1]姜文涛,王鑫杰,张晟翀.空间约束注意力机制的图像分类网络[J].智能系统学报,2025,20(6):1444-1460.[doi:10.11992/tis.202505025]
JIANG Wentao,WANG Xinjie,ZHANG Shengchong.Spatially constrained attention mechanism for image classification network[J].CAAI Transactions on Intelligent Systems,2025,20(6):1444-1460.[doi:10.11992/tis.202505025]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第6期
页码:
1444-1460
栏目:
学术论文—机器感知与模式识别
出版日期:
2025-11-05
- Title:
-
Spatially constrained attention mechanism for image classification network
- 作者:
-
姜文涛1, 王鑫杰1, 张晟翀2
-
1. 辽宁工程技术大学 软件学院, 辽宁 葫芦岛 125105;
2. 光电信息控制和安全技术重点实验室 天津, 300308
- Author(s):
-
JIANG Wentao1, WANG Xinjie1, ZHANG Shengchong2
-
1. School of Software, Liaoning Technical University, Huludao 125105, China;
2. Key Laboratory of Optoelectronic Information Control and Security Technology, Tianjin 300308, China
-
- 关键词:
-
图像分类; 空间约束注意力机制; 边缘感知卷积; 随机池化; 空间信息; 边缘特征; 特征融合; 残差网络
- Keywords:
-
image classification; spatially constrained attention mechanism; edge aware convolution; stochastic pooling; spatial information; edge features; feature fusion; residual network
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202505025
- 摘要:
-
针对分类网络中低阶特征提取不充分和特征图空间位置加权不足的问题,本文提出了一种空间约束注意力机制的图像分类网络(spatially constrained attention mechanism for image classification network,SCAM-Net)。SCAM-Net网络以WideResnet-28-10残差网络为基础架构。本文提出空间约束注意力机制(spatial constrained attention mechanism,SCA),通过引入空间约束机制和动态加权策略,显著增强了特征图的空间位置感知能力,使网络能够更精准地聚焦于关键区域,从而优化特征表示质量,提升模型在复杂场景下的判别能力。提出了边缘感知卷积(edge aware convolution,EAConv),通过融合Sobel算子和不同尺寸的卷积核,实现了对跨层次信息的整合,解决了原模型中首层卷积对边缘特征提取能力不足的问题。实验结果表明,在CIFAR-100、CIFAR-10、SVHN和GTSRB 4种数据集上,SCAM-Net相较于基线模型WideResnet-28-10在分类准确率上分别提升了2.43%、0.93%、0.14%和0.91%;同时,相比于性能排名第2的QKFormer网络在4种数据集上的分类准确率分别提高了0.13%、0.10%、0.12%和0.34%。空间约束注意力机制和边缘感知卷积相互协作,使得SCAM-Net在处理图像时能够更准确地关注图像中的复杂细节,有效提升图像分类精度。
- Abstract:
-
This paper addresses two major issues in image classification networks: insufficient low-level feature extraction and inadequate spatial weighting of feature maps. A novel image classification network named SCAM-Net (spatially constrained attention Mechanism for Image Classification Network) is proposed. SCAM-Net is built upon the WideResNet-28-10 architecture. First, a Spatial-Constrained Attention (SCA) mechanism is introduced. By incorporating a spatial constraint strategy and a dynamic weighting approach, SCA significantly enhances the network’s ability to perceive spatial positions in feature maps. This enables the model to focus more precisely on critical regions and improves the quality of feature representation, leading to better discrimination in complex scenarios. Second, an Edge-Aware Convolution (EAConv) is developed. EAConv integrates Sobel operators with convolutions of multiple kernel sizes to capture multi-level edge information, thereby compensating for the weak edge feature extraction capability in the original first convolutional layer. Experimental results demonstrate that SCAM-Net outperforms the baseline WideResNet-28-10 by 2.43%, 0.93%, 0.14%, and 0.91% on CIFAR-100, CIFAR-10, SVHN, and GTSRB datasets, respectively. Compared with the second-best model QKFormer, SCAM-Net achieves 0.13%, 0.10%, 0.12%, and 0.34% higher classification accuracy on the same datasets. These results confirm that the collaboration between the spatial-constrained attention mechanism and the edge-aware convolution allows SCAM-Net to better capture fine-grained visual details and effectively improve image classification performance.
备注/Memo
收稿日期:2025-5-27。
基金项目:国家自然科学基金项目(61601213);辽宁省自然科学基金项目(20170540426);辽宁省教育厅重点基金项目(LJYL049).
作者简介:姜文涛,副教授,博士,主要研究方向为图像与视觉信息计算。主持国防预研基金项目、辽宁省教育厅科学技术项目和辽宁省自然科学基金面上项目,发表学术论文35余篇。 E-mail:lntuwulue@163.com。;王鑫杰,硕士研究生,主要研究方向为深度学习与图像处理、模式识别与人工智能。E-mail:2585178999@qq.com。;张晟翀,硕士研究生,高级工程师,主要研究方向为数字信号处理。发表学术论文10余篇。E-mail:zsc417@126.com。
通讯作者:姜文涛. E-mail:lntuwulue@163.com
更新日期/Last Update:
1900-01-01