[1]解明扬,吴伟,徐成永,等.基于视觉伺服的协作机器人自适应阻抗控制技术[J].智能系统学报,2025,20(6):1474-1482.[doi:10.11992/tis.202504008]
 XIE Mingyang,WU Wei,XU Chengyong,et al.Visual servoing-based adaptive impedance control technology for collaborative robots[J].CAAI Transactions on Intelligent Systems,2025,20(6):1474-1482.[doi:10.11992/tis.202504008]
点击复制

基于视觉伺服的协作机器人自适应阻抗控制技术

参考文献/References:
[1] 张霖, 谢开鑫, 郑显华, 等. 多机器人系统感知能力和控制体系结构综述[J]. 智能系统学报, 2024, 19(4): 767-790.
ZHANG Lin, XIE Kaixin, ZHENG Xianhua, et al. A survey on perception ability and control architecture of multi-robot system[J]. CAAI transactions on intelligent systems, 2024, 19(4): 767-790.
[2] 季肖枫, 顾娜, 陆佳皓, 等. 船舶吊运机械臂焊接接头超声无损智能检测研究[J]. 舰船科学技术, 2024, 46(24): 149-154.
JI Xiaofeng, GU Na, LU Jiahao, et al. Ltrasonic non destructive intelligent testing of welding joints in ship crane arm[J]. Ship science and technology, 2024, 46(24): 149-154.
[3] SAHU M, ISHIDA H, CONNOLLY L, et al. ENTRI: enhanced navigational toolkit for robotic interventions[J]. IEEE transactions on medical robotics and bionics, 2024, 6(4): 1405-1408.
[4] 黎小巨, 陈洵凛, 祝华春. 深度学习引导的喷涂产线工件自动识别及分拣[J]. 机床与液压, 2025, 53(8): 93-100.
LI Xiaoju, CHEN Xunlin, ZHU Huachun. Workpieces automatic recognition and sorting of spray painting production line guided by deep learning[J]. Machine tool & hydraulics, 2025, 53(8): 93-100.
[5] 李娜, 高笑, 杨磊, 等. 基于改进算法融合与切换的采摘机械臂路径动态规划[J]. 农业机械学报, 2024, 55(11): 221-230,272.
LI Na, GAO Xiao, YANG Lei, et al. Dynamic path planning for picking robot arm based on improved algorithm fusion and switching[J]. Transactions of the Chinese society for agricultural machinery, 2024, 55(11): 221-230,272.
[6] 李秀智, 李家豪, 张祥银, 等. 基于深度学习的机器人最优抓取姿态检测方法[J]. 仪器仪表学报, 2020, 41(5): 108-117.
LI Xiuzhi, LI Jiahao, ZHANG Xiangyin, et al. Detection method of robot optimal grasp posture based on deep learning[J]. Chinese journal of scientific instrument, 2020, 41(5): 108-117.
[7] 郭勇, 赖广. 工业机器人关节空间轨迹规划及优化研究综述[J]. 机械传动, 2020, 44(2): 154-165.
GUO Yong, LAI Guang. Review of joint space trajectory planning and optimization for industrial robot[J]. Journal of mechanical transmission, 2020, 44(2): 154-165.
[8] WU Wei, XIE Mingyang, ZHANG Min, et al. Nonlinear model predictive control for industrial robot arms based on feedforward compensation[C]//2024 43rd Chinese Control Conference. Kunming: IEEE, 2024: 2945-2952.
[9] ULAGAOOZHIAN C, DUCHAINE V. A novel human-safe robotic gripper: an application of a programmable permanent magnet actuator[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyoto: IEEE, 2022: 4646-4652.
[10] KONG Xiaohong, LI Xinjian, ZHU Xinxin, et al. Detection model based on improved faster-RCNN in apple orchard environment[J]. Intelligent systems with applications, 2024, 21: 200325.
[11] HUSSAIN M. YOLOv1 to v8: unveiling each variant–a comprehensive review of YOLO[J]. IEEE access, 2024, 12: 42816-42833.
[12] LENZ I, LEE H, SAXENA A. Deep learning for detecting robotic grasps[J]. The international journal of robotics research, 2015, 34(4/5): 705-724.
[13] KUMRA S, KANAN C. Robotic grasp detection using deep convolutional neural networks[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 769-776.
[14] 刘万军, 姜岚, 曲海成, 等. 融合CNN与Transformer的MRI脑肿瘤图像分割[J]. 智能系统学报, 2024, 19(4): 1007-1015.
LIU Wanjun, JIANG Lan, QU Haicheng, et al. MRI brain tumor image segmentation by fusing CNN and Transformer[J]. CAAI transactions on intelligent systems, 2024, 19(4): 1007-1015.
[15] MORRISON D, CORKE P, LEITNER J. Learning robust, real-time, reactive robotic grasping[J]. The international journal of robotics research, 2020, 39(2/3): 183-201.
[16] HOGAN N. Impedance control: an approach to manipulation[C]//1984 American Control Conference. San Diego: IEEE, 1984: 304-313.
[17] BYUN J, KIM J, EOM D, et al. Image-based time-varying contact force control of aerial manipulator using robust impedance filter[J]. IEEE robotics and automation letters, 2024, 9(5): 4854-4861.
[18] XIU Bingkai, LI Zhan, PANG Bo, et al. Intelligent force tracking impedance control for aerial manipulator via characteristic model[J]. Nonlinear dynamics, 2025: 1-15.
[19] ZHANG Jianjun, LI Han, LIU Qunpo, et al. The model reference adaptive impedance control for underwater manipulator compliant operation[J]. Transactions of the institute of measurement and control, 2023, 45(11): 2135-2148.
[20] WU Changqu, WANG Zhuang, ZHANG Yuqiu, et al. Dexterous hand-object interaction control based on adaptive impedance algorithm[M]//Intelligent Robotics and Applications. Singapore: Springer Nature Singapore, 2023: 3-14.
[21] NAZMARA G R, NETO P, AGUIAR A P. Robust learning-based impedance control of robotic manipulators[C]//CONTROLO 2024: Proceedings of the 16th APCA International Conference on Automatic Control and Soft Computing. Porto: Springer Nature, 2025, 1325: 297.
[22] ZHU Xiang, KANG Shucheng, CHEN Jianyu. A contact-safe reinforcement learning framework for contact-rich robot manipulation[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyoto: IEEE, 2022: 2476-2482.
[23] MEI Zhimin, LI Yifan, ZHU Rongbo, et al. Intelligent fruit localization and grasping method based on YOLO VX model and 3D vision[J]. Agriculture, 2025, 15(14): 1508.
[24] HUI Nanmu, WU Xiaohui, HAN Xiaowei, et al. A robotic arm visual grasp detection algorithm combining 2D images and 3D point clouds[J]. Applied mechanics and materials, 2024, 919: 209-223.
[25] SONG Yanan, GAO Liang, LI Xinyu, et al. A novel robotic grasp detection method based on region proposal networks[J]. Robotics and computer-integrated manufacturing, 2020, 65: 101963.
[26] JHANG J Y, LIN Chengjian. Optimizing parameters of YOLO model through uniform experimental design for gripping tasks performed by an Internet of Things-based robotic arm[J]. Internet of Things, 2024, 27: 101332.
[27] STENO P, ALSADOON A, PRASAD P W C, et al. A novel enhanced region proposal network and modified loss function: threat object detection in secure screening using deep learning[J]. The journal of supercomputing, 2021, 77(4): 3840-3869.
相似文献/References:
[1]田勇,王洪光,潘新安,等.协作机器人的构型分析研究[J].智能系统学报,2019,14(2):217.[doi:10.11992/tis.201806044]
 TIAN Yong,WANG Hongguang,PAN Xinan,et al.Research on configuration analysis of collaborative robots[J].CAAI Transactions on Intelligent Systems,2019,14():217.[doi:10.11992/tis.201806044]

备注/Memo

收稿日期:2025-4-15。
基金项目:国家自然科学基金项目(62373186);江苏省自然科学基金项目(BK20231440).
作者简介:解明扬,副研究员,博士研究生,主要研究方向为智能机器人、多智能体深度强化学习。IEEE高级会员,《智能系统学报》《机器人》青年编委,获得国防科技进步二等奖和军事科学技术进步奖二等奖各1项。E-mail:myxie@nuaa.edu.cn。;吴伟,硕士研究生,主要研究方向为协作机器人智能控制。E-mail:wuwei0611@nuaa.edu.cn。;徐成永,硕士研究生,主要研究方向为人机交互、协作机器人智能控制。E-mail:chengyong.xu@nuaa.edu.cn。
通讯作者:解明扬. E-mail:myxie@nuaa.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com