[1]陆军,王旭东,汲广宇,等.基于恒定转弯率和加速度模型的点云多目标跟踪算法[J].智能系统学报,2025,20(6):1328-1338.[doi:10.11992/tis.202503034]
LU Jun,WANG Xudong,JI Guangyu,et al.Point cloud multitarget tracking algorithm based on the constant turn rate and acceleration model[J].CAAI Transactions on Intelligent Systems,2025,20(6):1328-1338.[doi:10.11992/tis.202503034]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第6期
页码:
1328-1338
栏目:
学术论文—机器学习
出版日期:
2025-11-05
- Title:
-
Point cloud multitarget tracking algorithm based on the constant turn rate and acceleration model
- 作者:
-
陆军, 王旭东, 汲广宇, 李杨
-
哈尔滨工程大学 智能科学与工程学院, 黑龙江 哈尔滨 150001
- Author(s):
-
LU Jun, WANG Xudong, JI Guangyu, LI Yang
-
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
点云; 多目标跟踪; 深度学习; 自动驾驶; 置信度二阶段匹配; 非线性运动; 数据关联; 匈牙利算法
- Keywords:
-
point cloud; multitarget tracking; deep learning; autonomous driving; confidence-based two-stage matching; nonlinear dynamics; data association; Hungarian algorithm
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202503034
- 摘要:
-
针对简单运动模型在复杂驾驶环境多目标跟踪表现不佳的问题,提出了一种基于恒定转弯率和加速度(constant turn rate and acceleration,CTRA)模型的点云多目标跟踪方法。通过采用包含角速度信息的运动模型来描述目标的运动轨迹,可提高在目标转弯时的跟踪精度。同时,利用检测算法提供的速度信息,在轨迹更新时对物体速度进行校正,以改善在目标速度突变时的跟踪效果。此外,采用基于置信度的两阶段匹配策略,以降低低置信度检测框对跟踪结果的影响。在nuScenes验证集上对所提出的三维目标检测与跟踪算法进行了性能评估,并通过消融实验验证了算法中各模块的有效性。实验结果表明,基于CTRA模型的点云多目标跟踪算法在跟踪精度上优于基于简单模型的算法,在目标转弯和速度突变场景下的跟踪效果显著提升,且跟踪过程中身份切换次数大幅减少。
- Abstract:
-
To address the suboptimal performance of simple motion models in the context of multitarget tracking within intricate driving environments, this paper proposes a point cloud-based multitarget tracking method that utilizes the constant turn rate and acceleration (CTRA) model. By incorporating angular velocity into the motion model to describe object trajectories, the method improves tracking accuracy during turning maneuvers. Furthermore, the velocity information provided by the detection algorithm is leveraged to correct object speeds during trajectory updates, enhancing robustness under sudden velocity changes. Moreover, a confidence-based two-stage matching strategy is employed to mitigate the influence of low-confidence detections on tracking results. The proposed 3D object detection and tracking algorithm is evaluated on the nuScenes validation set, and ablation studies are conducted to verify the effectiveness of each module. Experimental results demonstrate that the CTRA-based point cloud multitarget tracking algorithm exhibits superior performance in terms of tracking accuracy, significantly enhances performance in turning and abrupt velocity change scenarios, and substantially reduces identity switches during tracking when compared to simple motion models.
备注/Memo
收稿日期:2025-3-24。
基金项目:黑龙江省自然科学基金项目(F201123).
作者简介:陆军,教授,博士生导师,主要研究方向为计算机视觉、机器感知、 机械臂控制。科技部科技型中小企业创新基金项目评审专家,国家自然科学基金同行评议专家。编写著作5部,发表学术论文80余篇。E-mail: lujun0260@sina.com。;王旭东,硕士研究生,主要研究方向为计算机视觉。E-mail:wangxudongheu@163.com。;汲广宇,博士研究生,主要研究方向为计算机视觉、深度学习以及基于点云的三维目标检测。E-mail:jiguangyu94@163.com。
通讯作者:陆军. E-mail:lujun0260@sina.com
更新日期/Last Update:
1900-01-01