[1]李泽卉,隋晋光,陈鹏,等.融合时空交互特征与犯罪时空关联性的多类型犯罪预测模型[J].智能系统学报,2025,20(6):1339-1354.[doi:10.11992/tis.202502022]
 LI Zehui,SUI Jinguang,CHEN Peng,et al.Multitype crime prediction model integrating spatiotemporal interaction features and spatiotemporal correlation of crimes[J].CAAI Transactions on Intelligent Systems,2025,20(6):1339-1354.[doi:10.11992/tis.202502022]
点击复制

融合时空交互特征与犯罪时空关联性的多类型犯罪预测模型

参考文献/References:
[1] 刘恩博, 谌恺祺, 石岩, 等. 数据不确定性下的犯罪事件热点探测方法[J]. 武汉大学学报(信息科学版), 2024, 49(12): 2342-2354.
LIU Enbo, CHEN Kaiqi, SHI Yan, et al. Hot spot detection method of criminal events under data uncertainty[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2342-2354.
[2] 卢建平, 王昕宇. “党的十八大”以来犯罪形势的宏观、中观与微观考察: 基于司法统计数据的分析[J]. 犯罪研究, 2023(1): 32-51
LU Jianping, WANG Xinyu. A macro, meso and micro observation of the crime situation since the 18th National Congress of the CPC: an analysis based on criminal statistics[J]. Chinese criminology review, 2023(1): 32-51
[3] ZHAO Xiangyu, FAN Wenqi, LIU Hui, et al. Multi-type urban crime prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(4): 4388-4396.
[4] 阎耀军, 张明. 犯罪预测时空定位信息管理系统的构建[J]. 中国人民公安大学学报(社会科学版), 2013, 29(4): 73-80.
YAN Yaojun, ZHANG Ming. Construction of information management system for spatial and temporal location of crime prediction[J]. Journal of People’s Public Security University of China (social sciences edition), 2013, 29(4): 73-80.
[5] 新浪科技.美警方测试犯罪预测软件可大幅降低犯罪率[EB/OL].(2012-07-17) [2025-05-14]. http://tech.sina.com.cn/d/2012-07-17/08017395390.shtml.
[6] 姜春娇, 李慧. 基于犯罪预测智能平台的警务建设研究[J]. 公安研究, 2017(4): 34-40.
JIANG Chunjiao, LI Hui. Research on police construction based on intelligent platform of crime prediction[J]. Policing studies, 2017(4): 34-40.
[7] 赵锃泽, 刘大千, 郑滋椀, 等. 警务检查活动对盗窃犯罪的空间影响研究: 以浙江海宁市为例[J]. 地理科学进展, 2024, 43(11): 2298-2311.
ZHAO Zengze, LIU Daqian, ZHENG Ziwan, et al. Spatial influence of police inspection activities on theft crimes: a case study in Haining City, Zhejiang[J]. Progress in geography, 2024, 43(11): 2298-2311.
[8] 徐冲, 柳林, 周素红. 基于临近相似性考虑的犯罪热点密度图预测准确性比较: 以DP半岛街头抢劫犯罪为例[J]. 地理科学, 2016, 36(1): 55-62.
XU Chong, LIU Lin, ZHOU Suhong. The comparison of predictive accuracy of crime hotspot density maps with the consideration of the near similarity: a case study of robberies at DP peninsula[J]. Scientia geographica sinica, 2016, 36(1): 55-62.
[9] 柳林, 刘文娟, 廖薇薇, 等. 基于随机森林和时空核密度方法的不同周期犯罪热点预测对比[J]. 地理科学进展, 2018, 37(6): 761-771.
LIU Lin, LIU Wenjuan, LIAO Weiwei, et al. Comparison of random forest algorithm and space-time kernel density mapping for crime hotspot prediction[J]. Progress in geography, 2018, 37(6): 761-771.
[10] HUANG Chao, ZHANG Junbo, ZHENG Yu, et al. DeepCrime: attentive hierarchical recurrent networks for crime prediction[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018: 1423-1432.
[11] HUANG Chao, ZHANG Chuxu, ZHAO Jiashu, et al. MiST: a multiview and multimodal spatial-temporal learning framework for citywide abnormal event forecasting[C]//The World Wide Web Conference. San Francisco: ACM, 2019: 717-728.
[12] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//International Conference on Learning Representations. Vancouver: ICLR, 2018: 1-12.
[13] YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. Stockholm: International Joint Conferences on Artificial Intelligence Organization, 2018: 3634-3640.
[14] ZHAO Liupeng. A study on the application of data mining-based crime prediction models in criminal justice[J]. Journal of combinatorial mathematics and combinatorial computing, 2024, 123(1): 559-575.
[15] 林逸航, 郑坤, 夏书豪, 等. 融合区域空间相似性特征与事件时空特征的犯罪预测模型[J/OL]. 武汉大学学报(信息科学版). https://doi.org/10.13203/j.whugis20230395.
LIN Yihang, ZHENG Kun, XIA Shuhao, et al. A crime prediction model incorporating regional spatial similarity characteristics and spatio-temporal characteristics of events[J/OL]. Geomatics and Information Science of Wuhan University. https://doi.org/10.13203/j.whugis20230395.
[16] ZHAO Xiangyu, TANG Jiliang. Modeling temporal-spatial correlations for crime prediction[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 497-506.
[17] SHAN Miaoxuan, YE Chunlin, CHEN Peng, et al. Ada-GCNLSTM: an adaptive urban crime spatiotemporal prediction model[J]. Journal of safety science and resilience, 2025, 6(2): 226-236.
[18] 石拓, 张齐, 石磊. 多尺度视角特征动态融合的盗窃犯罪预测模型[J]. 智能系统学报, 2022, 17(6): 1104-1112.
SHI Tuo, ZHANG Qi, SHI Lei. Prediction model of theft crime based on the dynamic fusion of multiscale perspective characteristics[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1104-1112.
[19] 柳林, 纪佳楷, 宋广文, 等. 基于犯罪空间分异和建成环境的公共场所侵财犯罪热点预测[J]. 地球信息科学学报, 2019, 21(11): 1655-1668.
LIU Lin, JI Jiakai, SONG Guangwen, et al. Hotspot prediction of public property crime based on spatial differentiation of crime and built environment[J]. Journal of geo-information science, 2019, 21(11): 1655-1668.
[20] 贺日兴, 唐宗棣, 姜超, 等. 顾及道路权重的图卷积犯罪时空预测模型[J]. 地球信息科学学报, 2023, 25(10): 1986-1999.
HE Rixing, TANG Zongdi, JIANG Chao, et al. A graph convolution-based spatio-temporal crime prediction model considering road weights[J]. Journal of geo-information science, 2023, 25(10): 1986-1999.
[21] LI Zhe, ZHANG Xinyue, XU Fang, et al. A multi-scale video surveillance based information aggregation model for crime prediction[J]. Alexandria engineering journal, 2023, 73: 695-707.
[22] 李卫红, 闻磊, 陈业滨. 改进的GA-BP神经网络模型在财产犯罪预测中的应用[J]. 武汉大学学报(信息科学版), 2017, 42(8): 1110-1116,1171.
LI Weihong, WEN Lei, CHEN Yebin. Property crime forecast based on improved GA-BP neural network model[J]. Geomatics and information science of Wuhan University, 2017, 42(8): 1110-1116,1171.
[23] DAVIES T P, BISHOP S R. Modelling patterns of burglary on street networks[J]. Crime science, 2013, 2(1): 10.
[24] WHEELER A P, REUTER S. Redrawing hot spots of crime in Dallas, Texas[J]. Police quarterly, 2021, 24(2): 159-184.
[25] WHEELER A P, STEENBEEK W. Mapping the risk terrain for crime using machine learning[J]. Journal of quantitative criminology, 2021, 37(2): 445-480.
[26] YU Hongjie, LIU Lin, YANG Bo, et al. Crime prediction with historical crime and movement data of potential offenders using a spatio-temporal cokriging method[J]. ISPRS international journal of geo-information, 2020, 9(12): 732.
[27] HAN Xinge, HU Xiaofeng, WU Huanggang, et al. Risk prediction of theft crimes in urban communities: an integrated model of LSTM and ST-GCN[J]. IEEE access, 2020, 8: 217222-217230.
[28] ZHANG Tianyi, RAN Yibing, WEI Dong. Application of grid management in spatio-temporal prediction of crime[C]//2021 33rd Chinese Control and Decision Conference. Kunming: IEEE, 2021: 2745-2749.
[29] 徐冲, 柳林, 周素红, 等. 微观空间因素对街头抢劫影响的空间异质性: 以DP半岛为例[J]. 地理研究, 2017, 36(12): 2492-2504.
XU Chong, LIU Lin, ZHOU Suhong, et al. Spatial heterogeneity of micro-spatial factors’ effects on street robberies: a case study of DP peninsula[J]. Geographical research, 2017, 36(12): 2492-2504.
[30] FENG Jiajia, LIANG Yuebing, HAO Qi, et al. Comparing effectiveness of point of interest data and land use data in theft crime modelling: a case study in Beijing[J]. Land use policy, 2024, 147: 107357.
[31] LEE D W, LEE D S. Analysis of influential factors of violent crimes and building a spatial cluster in south Korea[J]. Applied spatial analysis and policy, 2020, 13(3): 759-776.
[32] SUMMERS L, JOHNSON S D. Does the configuration of the street network influence where outdoor serious violence takes place? using space syntax to test crime pattern theory[J]. Journal of quantitative criminology, 2017, 33(2): 397-420.
[33] RISTEA A, BONI M I, RESCH B, et al. Spatial crime distribution and prediction for sporting events using social media[J]. International journal of geographical information science, 2020, 34(9): 1708-1739.
[34] 沈兵. 城市犯罪风险时空分布预测方法研究[D]. 北京: 中国人民公安大学, 2022.
SHEN Bing. Study on the prediction method of urban crime risk spatial and temporal distribution[D]. Beijing: Chinese People’s Public Security University, 2022.
[35] SAMPSON R J, GROVES W B. Community structure and crime: testing social-disorganization theory[J]. American journal of sociology, 1989, 94(4): 774-802.
[36] 柳林, 杜方叶, 宋广文, 等. 犯罪共生空间的类型识别及其特征分析[J]. 地理科学, 2018, 38(8): 1199-1209.
LIU Lin, DU Fangye, SONG Guangwen, et al. Detecting and characterizing symbiotic clusters of crime[J]. Scientia geographica sinica, 2018, 38(8): 1199-1209.
[37] 王文汐, 霍宏涛, 蒋晨琛. 毒品犯罪与次生犯罪共生关系: 以华北沿海T市为例[J]. 科学技术与工程, 2023, 23(33): 14486-14496.
WANG Wenxi, HUO Hongtao, JIANG Chenchen. Exploring colocalization relationship between drug-related crimes and secondary crimes: take T city on the coast of North China as an example[J]. Science technology and engineering, 2023, 23(33): 14486-14496.
[38] CELIK M. Partial spatio-temporal co-occurrence pattern mining[J]. Knowledge and information systems, 2015, 44(1): 27-49.
[39] LI Ling, CHENG Jianquan, BANNISTER J, et al. Geographically and temporally weighted co-location quotient: an analysis of spatiotemporal crime patterns in greater Manchester[J]. International journal of geographical information science, 2022, 36(5): 918-942.
[40] DE OLIVEIRA V H, DE MEDEIROS C N, CARVALHO J R. Violence and local development in Fortaleza, Brazil: a spatial regression analysis[J]. Applied spatial analysis and policy, 2019, 12(1): 147-166.
[41] ZHANG Yang, CHENG Tao. Graph deep learning model for network-based predictive hotspot mapping of sparse spatio-temporal events[J]. Computers, environment and urban systems, 2020, 79: 101403.
[42] ZHAO Ling, SONG Yujiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE transactions on intelligent transportation systems, 2020, 21(9): 3848-3858.
[43] FARRELL G, PEASE K. Once bitten, twice bitten: Repeat victimisation and its implications for crime prevention[M]. London: Home Office Police Research Group, 1993: 46-52.
[44] SCH?LKOPF B, PLATT J, HOFMANN T. Analysis of representations for domain adaptation[C]//Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference. Vancouver: MIT Press, 2007: 137-144.
[45] City of Chicago Open Data Portal[DB/OL]. (2024-07-30) [2025-01-04]. https://data.cityofchicago.org.
[46] NYC Open Data[DB/OL]. (2024-12-01) [2025-01-04]. https://opendata.cityofnewyork.us.
[47] ECK J E, WEISBURD D. Crime places in crime theory[J]. Social science electronic publishing, 1995, 4: 1-33.
[48] 贺日兴, 陆宇梅, 姜超, 等. 近10年来犯罪时空预测国内外研究与实践进展[J]. 地球信息科学学报, 2023, 25(4): 866-882.
HE Rixing, LU Yumei, JIANG Chao, et al. Progress in research and practice of spatial-temporal crime prediction over the past decade[J]. Journal of geo-information science, 2023, 25(4): 866-882.
[49] 顾海硕, 陈鹏, 李慧波. 犯罪时空预测方法研究综述与展望[J]. 地球信息科学学报, 2021, 23(1): 43-57.
GU Haishuo, CHEN Peng, LI Huibo. Overview and prospect for spatial-temporal prediction of crime[J]. Journal of geo-information science, 2021, 23(1): 43-57.
[50] CHEN Tianqi, HE Tong, BENESTY M, et al. Xgboost: extreme gradient boosting[C]//Processdings of 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Franciso:Association for Gomputing Machinery, 2016: 785-799.
[51] ALVES L G A, RIBEIRO H V, RODRIGUES F A. Crime prediction through urban metrics and statistical learning[J]. Physica A: statistical mechanics and its applications, 2018, 505: 435-443.
[52] SHI Xingjian, CHEN Zhourong, WANG Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Advances in Neural Information Processing Systems 28 (NIPS 2015). Montreal: MIT Press, 2015: 802-810.
[53] LI Yaguang, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL]. (2017-07-06)[2025-01-24]. https://arXiv.org/abs/1707.01926.
[54] WU Zonghan, PAN Shirui, LONG Guodong, et al. Graph wavenet for deep spatial-temporal graph modeling[EB/OL]. (2019-06-01)[2025-01-24]. https://arxiv.org/abs/1906.00121.
[55] RAYHAN Y, HASHEM T. AIST: an interpretable attention-based deep learning model for crime prediction[J]. ACM transactions on spatial algorithms and systems, 2023, 9(2): 1-31.
[56] ZHANG Yan, ZHAO Jihong, REN Ling, et al. Space–time clustering of crime events and neighborhood characteristics in Houston[J]. Criminal justice review, 2015, 40(3): 340-360.
[57] HABERMAN C P, RATCLIFFE J H. The predictive policing challenges of near repeat armed street robberies[J]. Policing, 2012, 6(2): 151-166.

备注/Memo

收稿日期:2025-2-28。
基金项目:中国人民公安大学基本科研业务费项目(2024JKF04);高等学校学科创新引智基地项目(B20087).
作者简介:李泽卉,硕士研究生,主要研究方向为犯罪时空预测。E-mail: lizehui40@zgrmgadx.wecom.work。;隋晋光,博士,高级实验师,主要研究方向为警务信息技术。E-mail: suijinguang@ppsuc.edu.cn。;陈鹏,教授,博士生导师,主要研究方向为犯罪地理与公安大数据分析。发表学术论文80余篇。E-mail:chenpeng@ppsuc.edu.cn。
通讯作者:隋晋光. E-mail:suijinguang@ppsuc.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com