[1]王子豪,夏秀山,曹洋,等.基于序列分析的多模态石化VOCs烟羽语义分割[J].智能系统学报,2025,20(6):1420-1431.[doi:10.11992/tis.202501034]
WANG Zihao,XIA Xiushan,CAO Yang,et al.Multimodal sequence-based petrochemical VOCs plume semantic segmentation[J].CAAI Transactions on Intelligent Systems,2025,20(6):1420-1431.[doi:10.11992/tis.202501034]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第6期
页码:
1420-1431
栏目:
学术论文—机器感知与模式识别
出版日期:
2025-11-05
- Title:
-
Multimodal sequence-based petrochemical VOCs plume semantic segmentation
- 作者:
-
王子豪1, 夏秀山1, 曹洋2, 张锟宇3
-
1. 中国科学技术大学 先进技术研究院, 安徽 合肥 230031;
2. 中国科学技术大学 自动化系, 安徽 合肥 230027;
3. 合肥综合性国家科学中心 人工智能研究院, 安徽 合肥 230088
- Author(s):
-
WANG Zihao1, XIA Xiushan1, CAO Yang2, ZHANG Kunyu3
-
1. Institute of Advanced Technology, University of Science & Technology of China, Hefei 230031, China;
2. Department of Automation, University of Science & Technology of China, Hefei 230027, China;
3. Institute of Artificial Intelligence, Hefei Comp
-
- 关键词:
-
VOCs烟羽; 气体检测; 语义分割; 运动信息; 扩散; 多模态特征融合; 红外图像; 边缘模糊
- Keywords:
-
VOCs plume; gas detectors; semantic segmentation; motion information; diffusion; multimodal feature fusion; infrared imaging; blurred edge
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202501034
- 摘要:
-
石化挥发性有机化合物(volatile organic compounds, VOCs)烟羽在红外成像下表现出形态扭曲多变、边缘模糊和半透明的特性,直接使用现有的图像语义分割方法难以提取气体特征,分割效果不佳。为此本文提出一种结合上下文序列图像的多模态石化VOCs烟羽分割方法,利用烟羽边缘的扩散特性提取目标帧的前后帧运动扩散矢量,通过叠加运动信息增强VOCs烟羽边缘特征。利用VOCs在可见光下不成像的特点,设计自适应权重模块融合可见光和红外光图像特征,进一步增强烟羽特征,过滤背景干扰。引入一种基于区域代理的烟羽分割解码器,加强烟羽边缘和中心特征的关联性,同时降低烟羽分割计算量。此外,本文构建了石化VOCs可见光与红外视频数据集,在数据集上的实验结果表明,与基线网络相比,本文方法计算效率提高了1.81帧/s,同时分割精度提高了3.53%。
- Abstract:
-
Petrochemical volatile organic compounds (VOCs) plumes manifest distorted and changeable shapes, blurred edges, and translucency under infrared imaging. The implementation of existing image semantic segmentation methods in the direct application context presents significant challenges in the extraction of gas features, resulting in suboptimal outcomes. To address this, this paper proposes a multimodal petrochemical VOCs plume segmentation method (MPPS) that incorporates contextual sequences. Initially, the diffusion characteristics of the plume edge are utilized to extract the motion diffusion vectors of the previous and subsequent frames of the target frame. Subsequently, the edge features of the VOC plume are enhanced by superimposing motion information. Second, an adaptive weight module is designed to leverage the non-imaging characteristics of VOCs in visible light. This module fuses visible and infrared image features, further enhancing plume features and filtering background interference. Finally, a region-based proxy plume segmentation decoder is introduced to enhance the correlation between edge and center features of the plume while reducing the computational load of plume segmentation. Furthermore, this paper constructs a visible and infrared petrochemical VOCs video dataset. Experimental results on this dataset demonstrate that MPPS improves computational efficiency by 1.81 frames per second and segmentation accuracy by 3.53% compared to baseline networks.
备注/Memo
收稿日期:2025-1-27。
基金项目:安徽省重点研究与开发计划项目(2022107020030).
作者简介:王子豪,硕士研究生,主要研究方向为计算机视觉、图像分割。E-mail:wzh8096@mail.ustc.edu.cn。;夏秀山,副研究员,主要研究方向为计算机视觉、多模态信息处理。主持、参与国家和省部级科研项目10余项,发表学术论文10余篇。E-mail:xiaxiushan@iat.ustc.edu.cn。;曹洋,副教授,博士生导师,主要研究方向计算机视觉、智能机器人。主持国家重点研发计划项目子课题、国家自然科学基金项目等,获中国自动化学会科技奖一等奖1项,发表学术论文50余篇。E-mail:forrest@ustc.edu.cn。
通讯作者:夏秀山. E-mail:xiaxiushan@iat.ustc.edu.cn
更新日期/Last Update:
1900-01-01