[1]邓翠艳,齐小刚.基于深度行为评判策略的5G光伏基站低碳绿能方法[J].智能系统学报,2025,20(5):1198-1206.[doi:10.11992/tis.202501024]
DENG Cuiyan,QI Xiaogang.Low-carbon green energy methods for 5G photovoltaic station based on the deep actor-critic strategy[J].CAAI Transactions on Intelligent Systems,2025,20(5):1198-1206.[doi:10.11992/tis.202501024]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第5期
页码:
1198-1206
栏目:
学术论文—智能系统
出版日期:
2025-09-05
- Title:
-
Low-carbon green energy methods for 5G photovoltaic station based on the deep actor-critic strategy
- 作者:
-
邓翠艳1, 齐小刚2
-
1. 晋中信息学院, 山西 晋中 030800;
2. 西安电子科技大学 数学与统计学院, 陕西 西安 710071
- Author(s):
-
DENG Cuiyan1, QI Xiaogang2
-
1. Jinzhong College of Information, Jinzhong 030800, China;
2. School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
-
- 关键词:
-
5G低碳绿能; 光伏能源; DAC节能策略; 强化学习; 节能策略; 智能体; 电网; 蓄电池
- Keywords:
-
5G low-carbon green energy; photovoltaic; DAC energy-saving strategy; reinforcement learning; power-saving strategy; agent; power grid; battery
- 分类号:
-
TP311.13
- DOI:
-
10.11992/tis.202501024
- 摘要:
-
5G作为新型信息基础设施,正融入千行百业,超宽带技术及万物互联设备的大规模应用增加了网络能耗、运营成本和碳排放。运营统计5G单站功率已达到2 000 W左右,月均电费可达1 000元左右。随着光伏产业的发展,将清洁能源应用到大功耗5G网络已成为网络低碳绿能发展的一种新途径。本文提出了一种基于深度行为评判(deep actor-critic, DAC)策略的5G光伏基站低碳绿能方法,使用光伏能源代替传统的电网火电能源。建立了光伏、蓄电池和电网一体化储能供能模型;为了最大限度节约碳排放,加大绿能供应效率,设计了一种DAC节能策略;构建5G网络节电智能体,引入A3C(actor-critic algorithm)智能体动作奖励模型来操纵蓄电池节能动作;通过求解更好的奖励值,蓄电池可以找到最佳的充放电策略实现低碳绿能。通过对比仿真结果,在不同季节下,相比Q学习及深度Q网络算法,本文方法具有更好的网络节能表现,提高了低碳绿能效率。
- Abstract:
-
The large-scale application of 5G ultra-broadband technology and IoT devices has significantly increased energy consumption, operational costs, and CO2 emissions. For example, a single 5G base station can consume approximately 2,000 W, incurring monthly electricity costs of about 1,000 yuan. With the development of the photovoltaic industry, integrating clean energy sources into high-power 5G networks has emerged as a promising approach to support low-carbon development. This paper proposes a low-carbon energy management method for 5G networks based on a deep actor-critic (DAC) strategy, which replaces conventional grid power with photovoltaic energy. An integrated energy storage model combining photovoltaic systems, battery storage, and grid connectivity is developed. A DAC-based optimization strategy is then applied to maximize carbon emission reductions and improve the efficiency of green energy supply. To support this strategy, a 5G network power supply agent is constructed using the A3C algorithm in conjunction with a deep Q-network, enabling dynamic energy optimization. By optimizing reward functions, the proposed method achieves high energy efficiency. Simulation results demonstrate that, across different seasons, the proposed method outperforms both Q-learning and the deep Q-network algorithms in improving network energy efficiency, thereby advancing low-carbon and green energy objectives.
更新日期/Last Update:
2025-09-05