[1]李明晗,肖阳,邢向磊.分析力学和图神经网络的轨迹预测方法[J].智能系统学报,2025,20(6):1355-1365.[doi:10.11992/tis.202501020]
 LI Minghan,XIAO Yang,XING Xianglei.Trajectory prediction methods based on analytical mechanics and graph neural networks[J].CAAI Transactions on Intelligent Systems,2025,20(6):1355-1365.[doi:10.11992/tis.202501020]
点击复制

分析力学和图神经网络的轨迹预测方法

参考文献/References:
[1] BARTH A, FRANKE U. Where will the oncoming vehicle be the next second? [C]//2008 IEEE Intelligent Vehicles Symposium. Eindhoven: IEEE, 2008: 1068-1073.
[2] KOOIJ J F P, SCHNEIDER N, GAVRILA D M. Analysis of pedestrian dynamics from a vehicle perspective[C]//2014 IEEE Intelligent Vehicles Symposium Proceedings. Dearborn: IEEE, 2014: 1445-1450.
[3] KARAMOUZAS I, SKINNER B, GUY S J. Universal power law governing pedestrian interactions[J]. Physical review letters, 2014, 113(23): 238701.
[4] BATZ T, WATSON K, BEYERER J. Recognition of dangerous situations within a cooperative group of vehicles[C]//2009 IEEE Intelligent Vehicles Symposium. Xi’an: IEEE, 2009: 907-912.
[5] PANG Bo, ZHAO Tianyang, XIE Xu, et al. Trajectory prediction with latent belief energy-based model[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 11814-11824.
[6] LECUN Y, CHOPRA S, HADSELL R, et al. Energy-based models[M]//Predicting Structured Data. [S. l. ]: The MIT Press, 2007: 191-246.
[7] 姜立超, 尚晓兵, 金豹, 等. 基于遗传算法-v支持向量回归的船舶轨迹预测[J]. 哈尔滨工程大学学报, 2024, 45(10): 2001-2006
JIAN Lichao, SHANG Xiaobing, JIN Bao, et al. Ship trajectory prediction based on genetic algorithm-v support vector regression[J]. Journal of Harbin Engineering University, 2024, 45(10): 2001-2006
[8] LIU Xiaoli, YIN Jianqin, LIU Jin, et al. TrajectoryCNN: a new spatio-temporal feature learning network for human motion prediction[J]. IEEE transactions on circuits and systems for video technology, 2021, 31(6): 2133-2146.
[9] AKSAN E, KAUFMANN M, CAO Peng, et al. A spatio-temporal transformer for 3D human motion prediction[C]//2021 International Conference on 3D Vision. London: IEEE, 2021: 565-574.
[10] MAO Wei, LIU Miaomiao, SALZMANN M, et al. Learning trajectory dependencies for human motion prediction[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9489-9497.
[11] DANG Lingwei, NIE Yongwei, LONG Chengjiang, et al. MSR-GCN: multi-scale residual graph convolution networks for human motion prediction[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 11447-11456.
[12] LI Maosen, CHEN Siheng, ZHANG Zijing, et al. Skeleton-parted graph scattering networks for 3D human motion prediction[C]//Computer Vision-ECCV 2022. Cham: Springer Nature Switzerland, 2022: 18-36.
[13] ZHOU Jincao, BAI Xin, FU Weiping, et al. Pedestrian intention estimation and trajectory prediction based on data and knowledge-driven method[J]. IET intelligent transport systems, 2024, 18(2): 315-331.
[14] 窦慧, 张凌茗, 韩峰, 等. 卷积神经网络的可解释性研究综述[J]. 软件学报, 2024, 35(1): 159-184.
DOU Hui, ZHANG Lingming, HAN Feng, et al. Survey on convolutional neural network interpretability[J]. Journal of software, 2024, 35(1): 159-184.
[15] 杨朋波, 桑基韬, 张彪, 等. 面向图像分类的深度模型可解释性研究综述[J]. 软件学报, 2023, 34(1): 230-254.
YANG Pengbo, SANG Jitao, ZHANG Biao, et al. Survey on interpretability of deep models for image classification[J]. Journal of software, 2023, 34(1): 230-254.
[16] 曹健, 陈怡梅, 李海生, 等. 基于图神经网络的行人轨迹预测研究综述[J]. 计算机工程与科学, 2023, 45(6): 1040-1053.
CAO Jian, CHEN Yimei, LI Haisheng, et al. A survey of pedestrian trajectory prediction based on graph neural network[J]. Computer engineering & science, 2023, 45(6): 1040-1053.
[17] 冯唐思捷, 梁伟. 基于物理信息神经网络的薄壁结构屈曲分析[J]. 力学学报, 2023, 55(11): 2539-2553.
FENG Tangsijie, LIANG Wei. The buckling analysis of thin-walled structures based on physicsinformed neural networks[J]. Chinese journal of theoretical and applied mechanics, 2023, 55(11): 2539-2553.
[18] 刘才山, 郭永新. 多体系统动力学与分析动力学专题序[J]. 力学学报, 2020, 52(4): 916.
LIU Caishan, GUO Yongxin. Special topics on dynamics of multi-body systems and analytical dynamics[J]. Chinese journal of theoretical and applied mechanics, 2020, 52(4): 916.
[19] LANDAU L D, LIFSHITZ E M. Course of theoretical physics[M]. British: Pergamon Press, 1980.
[20] BUTCHER J C. A history of Runge-Kutta methods[J]. Applied numerical mathematics, 1996, 20(3): 247-260.
[21] 张心祎, 谭耀, 邢向磊. 基于物理先验的深度特征融合水下图像复原[J]. 智能系统学报, 2023, 18(6): 1185-1196.
ZHANG Xinyi, TAN Yao, XING Xianglei. Deep feature fusion for underwater-image restoration based on physical priors[J]. CAAI transactions on intelligent systems, 2023, 18(6): 1185-1196.
[22] LUTTER M. Deep lagrangian networks: Using physics as model prior for deep learning[EB/OL]. (2019-07-10)[2024-09-19]. https://arxiv.org/abs/1907.04490.
[23] 刘建敏, 林晖, 汪晓丁. 基于图注意力机制的无地图场景轨迹预测方法[J]. 计算机工程, 2024, 50(7): 144-153.
LIU Jianmin, LIN Hui, WANG Xiaoding. Graph attention mechanism-based method for trajectory prediction in map-free scenes[J]. Computer engineering, 2024, 50(7): 144-153.
[24] 连静, 丁荣琪, 李琳辉, 等. 基于图模型和注意力机制的车辆轨迹预测方法[J]. 兵工学报, 2023, 44(7): 2162-2170.
LIAN Jing, DING Rongqi, LI Linhui, et al. Vehicle trajectory prediction method based on graph models and attention mechanism[J]. Acta armamentarii, 2023, 44(7): 2162-2170.
[25] 郝祎琛, 谢心喻, 丁家琦, 等. 瞬态多相流场图神经网络时空预测方法研究[J]. 哈尔滨工程大学学报, 2024, 45(9): 1761-1769
HAO Yichen, XIE Xinyu, DING Jiaqi, et al. Spatiotemporal prediction method for the transient multiphase flow field via graph neural network[J]. Journal of Harbin Engineering University, 2024, 45(9): 1761-1769
[26] 李浩淼, 张含笑, 邢向磊. 联合局部多尺度和全局上下文特征的步态识别[J]. 智能系统学报, 2024, 19(4): 853-862.
LI Haomiao, ZHANG Hanxiao, XING Xianglei. Gait recognition with united local multiscale and global context features[J]. CAAI transactions on intelligent systems, 2024, 19(4): 853-862.
[27] KIPF T, FETAYA E, WANG K C, et al. Neural relational inference for interacting systems[C]//International conference on machine learning. Stockholm: PMLR, 2018: 2688-2697.
[28] RIEDMILLER M. Multi layer perceptron[EB/OL]. [2024-10-11]. http://machine-learning-lab.com/_media/documents/teaching/ss12/ml/05_mlps.printer.pdf.
[29] HA S, JEONG H. Learning heterogeneous interaction strengths by trajectory prediction with graph neural network[EB/OL]. (2022-01-31)[2024-10-15]. https://arxiv.org/abs/2105.14491.
[30] HUANG W, HAN J, RONG Y, et al. Equivariant graph mechanics networks with constraints[EB/OL]. (2022-03-12)[2024-12-15]. https://arxiv.org/abs/2208.13179.
[31] IONESCU C, PAPAVA D, OLARU V, et al. Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(7): 1325-1339.
[32] BRODY S, ALON U, YAHAV E. How attentive are graph attention networks? [EB/OL]. (2021-05-30)[2024-12-15]. https://arxiv.org/abs/2105.14491.
[33] MA Tiezheng, NIE Yongwei, LONG Chengjiang, et al. Progressively generating better initial guesses towards next stages for high-quality human motion prediction[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 6427-6436.
相似文献/References:
[1]吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(1):14.[doi:10.11992/tis.201908034]
 WU Guodong,ZHA Zhikang,TU Lijing,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15():14.[doi:10.11992/tis.201908034]
[2]张勇,高大林,巩敦卫,等.用于关系抽取的注意力图长短时记忆神经网络[J].智能系统学报,2021,16(3):518.[doi:10.11992/tis.202008036]
 ZHANG Yong,GAO Dalin,GONG Dunwei,et al.Attention graph long short-term memory neural network for relation extraction[J].CAAI Transactions on Intelligent Systems,2021,16():518.[doi:10.11992/tis.202008036]
[3]周俊,张志强,曹月恬,等.地理位置和时间感知的表示学习框架[J].智能系统学报,2021,16(5):909.[doi:10.11992/tis.202104011]
 ZHOU Jun,ZHANG Zhiqiang,CAO Yuetian,et al.A geography and time aware representation learning framework[J].CAAI Transactions on Intelligent Systems,2021,16():909.[doi:10.11992/tis.202104011]
[4]卢毅,陈亚冉,赵冬斌,等.关键点图对比图像分类方法[J].智能系统学报,2023,18(1):36.[doi:10.11992/tis.202112001]
 LU Yi,CHEN Yaran,ZHAO Dongbin,et al.Keypoint-based graph contrastive neural network for image classification[J].CAAI Transactions on Intelligent Systems,2023,18():36.[doi:10.11992/tis.202112001]
[5]车飞虎,张大伟,邵朋朋,等.基于四元数门控图神经网络的脚本事件预测[J].智能系统学报,2023,18(1):138.[doi:10.11992/tis.202203042]
 CHE Feihu,ZHANG Dawei,SHAO Pengpeng,et al.Script event prediction based on a quaternion-gated graph neural network[J].CAAI Transactions on Intelligent Systems,2023,18():138.[doi:10.11992/tis.202203042]
[6]赵靖文,李煊鹏,张为公.车辆多目标交互行为建模的轨迹预测方法[J].智能系统学报,2023,18(3):480.[doi:10.11992/tis.202201022]
 ZHAO Jingwen,LI Xuanpeng,ZHANG Weigong.Vehicle trajectory prediction method based on modeling of multi-agent interaction behavior[J].CAAI Transactions on Intelligent Systems,2023,18():480.[doi:10.11992/tis.202201022]
[7]孟祥福,温晶,李子函,等.多重注意力指导下的异构图嵌入方法[J].智能系统学报,2023,18(4):688.[doi:10.11992/tis.202204006]
 MENG Xiangfu,WEN Jing,LI Zihan,et al.Heterogeneous graph embedding method guided by the multi-attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18():688.[doi:10.11992/tis.202204006]
[8]周贤琛,马扬,程光权,等.战场目标实体类型识别的鲁棒图神经网络方法[J].智能系统学报,2023,18(6):1156.[doi:10.11992/tis.202111025]
 ZHOU Xianchen,MA Yang,CHENG Guangquan,et al.Robust graph neural network method for target entity type recognition in a battlefield environment[J].CAAI Transactions on Intelligent Systems,2023,18():1156.[doi:10.11992/tis.202111025]
[9]曹汉童,陈璟.融合Doc2vec与GCN的多类型蛋白质相互作用预测方法[J].智能系统学报,2023,18(6):1165.[doi:10.11992/tis.202212029]
 CAO Hantong,CHEN Jing.Prediction of multitype protein interactions combining Doc2vec and GCN[J].CAAI Transactions on Intelligent Systems,2023,18():1165.[doi:10.11992/tis.202212029]
[10]刘晓光,李梅.基于深度学习的药物-靶标相互作用预测研究综述[J].智能系统学报,2024,19(3):494.[doi:10.11992/tis.202308024]
 LIU Xiaoguang,LI Mei.A survey of deep learning-based drug-target interaction prediction[J].CAAI Transactions on Intelligent Systems,2024,19():494.[doi:10.11992/tis.202308024]

备注/Memo

收稿日期:2025-1-26。
基金项目:国家自然科学基金项目(62076078,61703119).
作者简介:李明晗,主要研究方向为轨迹预测与图像识别。E-mail:liminghan721@gmail.com。;肖阳,硕士研究生,主要研究方向为轨迹预测、基于物理模型的深度学习。E-mail:xiaoy@hrbeu.edu.cn。;邢向磊,教授,博士生导师,主要研究方向为模式识别与计算机视觉。获得黑龙江省高校科学技术奖(自然科学类)一等奖,获得《智能系统学报》优秀论文奖。发表学术论文60余篇。E-mail:xingxl@hrbeu.edu.cn。
通讯作者:邢向磊. E-mail:xingxl@hrbeu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com