[1]吴涛,刘夏,孔祥增.基于自适应结构稀疏回归的异常脑电识别方法[J].智能系统学报,2025,20(6):1432-1443.[doi:10.11992/tis.202411006]
 WU Tao,LIU Xia,KONG Xiangzeng.Abnormal electroencephalography recognition via adaptive structured sparse regression[J].CAAI Transactions on Intelligent Systems,2025,20(6):1432-1443.[doi:10.11992/tis.202411006]
点击复制

基于自适应结构稀疏回归的异常脑电识别方法

参考文献/References:
[1] 王振宇, 向泽锐, 支锦亦. 离散小波变换和自编码器耦合的脑电信号异常检测方法[J]. 北京邮电大学学报, 2024, 47(2): 66-73.
WANG Zhenyu, XIANG Zerui, ZHI Jinyi. Detection method for abnormal electroencephalographic signals coupled with discrete wavelet transform and autoencoder[J]. Journal of Beijing University of Posts and Telecommunications, 2024, 47(2): 66-73.
[2] 张军鹏, 施玉杰, 蒋睿, 等. 基于脑电信号的认知功能障碍识别与分类进展综述[J]. 计算机应用, 2023, 43(10): 3297-3308.
ZHANG Junpeng, SHI Yujie, JIANG Rui, et al. Review on advances in recognition and classification of cognitive impairment based on EEG signals[J]. Journal of computer applications, 2023, 43(10): 3297-3308.
[3] L?PEZ DE DIEGO S. Automated interpretation of abnormal adult electroencephalograms[D]. Philadelphia: Temple University, 2017.
[4] MEI Ning, GROSSBERG M D, NG K, et al. Identifying sleep spindles with multichannel EEG and classification optimization[J]. Computers in biology and medicine, 2017, 89: 441-453.
[5] GEMEIN L A W, SCHIRRMEISTER R T, CHRAB?SZCZ P, et al. Machine-learning-based diagnostics of EEG pathology[J]. NeuroImage, 2020, 220: 117021.
[6] TANG Fengzhen, ADAM L, SI Bailu. Group feature selection with multiclass support vector machine[J]. Neurocomputing, 2018, 317: 42-49.
[7] WANG Min, YIN Xuefei, ZHU Yanming, et al. Representation learning and pattern recognition in cognitive biometrics: a survey[J]. Sensors, 2022, 22(14): 5111.
[8] ALBAQAMI H, HASSAN G M, SUBASI A, et al. Automatic detection of abnormal EEG signals using wavelet feature extraction and gradient boosting decision tree[J]. Biomedical signal processing and control, 2021, 70: 102957.
[9] GOWTHAM R N, HAIT S R, GUHA D, et al. Classification of epileptic EEG signals with the utilization of Bonferroni mean based fuzzy pattern tree[J]. Expert systems with applications, 2024, 239: 122424.
[10] SHARMA M, PATEL S, ACHARYA U R. Automated detection of abnormal EEG signals using localized wavelet filter banks[J]. Pattern recognition letters, 2020, 133: 188-194.
[11] IDOWU O P, ADELOPO O, ILESANMI A E, et al. Neuro-evolutionary approach for optimal selection of EEG channels in motor imagery based BCI application[J]. Biomedical signal processing and control, 2021, 68: 102621.
[12] ZHONG Yunning, WEI Hongyu, CHEN Lifei, et al. Automated EEG pathology detection based on significant feature extraction and selection[J]. Mathematics, 2023, 11(7): 1619.
[13] 刘建伟, 崔立鹏, 罗雄麟. 结构稀疏模型[J]. 计算机学报, 2017, 40(6): 1309-1337.
LIU Jianwei, CUI Lipeng, LUO Xionglin. Structured sparse models[J]. Chinese journal of computers, 2017, 40(6): 1309-1337.
[14] ZHENG Wenming. Multichannel EEG-based emotion recognition via group sparse canonical correlation analysis[J]. IEEE transactions on cognitive and developmental systems, 2016, 9(3): 281-290.
[15] 徐雪远, 刘建红, 李子遇, 等. 基于正交回归和特征加权的脑电情感特征选择方法[J]. 中国科学: 信息科学, 2023, 53(1): 33-45.
XU Xueyuan, LIU Jianhong, LI Ziyu, et al. EEG emotional feature selection method based on orthogonal regression and feature weighting[J]. Scientia sinica (informationis), 2023, 53(1): 33-45.
[16] ALGAMAL Z Y, LEE M H. Penalized logistic regression with the adaptive LASSO for gene selection in high-dimensional cancer classification[J]. Expert systems with applications, 2015, 42(23): 9326-9332.
[17] LIU Cheng, WONG H S. Structured penalized logistic regression for gene selection in gene expression data analysis[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2019, 16(1): 312-321.
[18] WANG Yadi, ZHANG Wenbo, FAN Minghu, et al. Regression with adaptive lasso and correlation based penalty[J]. Applied mathematical modelling, 2022, 105: 179-196.
[19] BLANCO D?AZ C F, RUIZ OLAYA A F. A novel method based on regularized logistic regression and CCA for P300 detection using a reduced number of EEG trials[J]. IEEE Latin America transactions, 2020, 18(12): 2147-2154.
[20] GARC?S P, BAUMEISTER S, MASON L, et al. Resting state EEG power spectrum and functional connectivity in autism: a cross-sectional analysis[J]. Molecular autism, 2022, 13(1): 22.
[21] WANG Yadi, YANG Xinguang, LU Yongjin. Informative gene selection for microarray classification via adaptive elastic net with conditional mutual information[J]. Applied mathematical modelling, 2019, 71: 286-297.
[22] PATIL A R, PARK B K, KIM S. Adaptive lasso with weights based on normalized filtering scores in molecular big data[J]. Journal of theoretical and computational chemistry, 2020, 19(4): 2040010.
[23] PARK H, SHIRAISHI Y, IMOTO S, et al. A novel adaptive penalized logistic regression for uncovering biomarker associated with anti-cancer drug sensitivity[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2017, 14(4): 771-782.
[24] LI Juntao, WANG Yadi, XIAO Huimin, et al. Gene selection of rat hepatocyte proliferation using adaptive sparse group lasso with weighted gene co-expression network analysis[J]. Computational biology and chemistry, 2019, 80: 364-373.
[25] WANG Yadi, LI Xiaoping, RUIZ R. Feature selection with maximal relevance and minimal supervised redundancy[J]. IEEE transactions on cybernetics, 2023, 53(2): 707-717.
[26] BOU A E, NGUYEN D K, RIHANA S, et al. Towards accurate prediction of epileptic seizures: a review[J]. Biomedical signal processing and control, 2017, 34: 144-157.
[27] YAGER R R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking[J]. IEEE transactions on systems, man, and cybernetics, 1988, 18(1): 183-190.
[28] WANG Lianxi, JIANG Shengyi, JIANG Siyu. A feature selection method via analysis of relevance, redundancy, and interaction[J]. Expert systems with applications, 2021, 183: 115365.
[29] FRIEDMAN J, HASTIE T, TIBSHIRANI R. Regularization paths for generalized linear models via coordinate descent[J]. Journal of statistical software, 2010, 33(1): 1-22.
[30] KHAN H A, AIN R U, KAMBOH A M, et al. The NMT scalp EEG dataset: an open-source annotated dataset of healthy and pathological EEG recordings for predictive modeling[J]. Frontiers in neuroscience, 2022, 15: 755817.
[31] ROY S, KIRAL-KORNEK I, HARRER S. ChronoNet: a deep recurrent neural network for abnormal EEG identification[M]//Artificial Intelligence in Medicine. Cham: Springer International Publishing, 2019: 47-56.
[32] ZHANG Zhongheng, TREVINO V, HOSEINI S S, et al. Variable selection in Logistic regression model with genetic algorithm[J]. Annals of translational medicine, 2018, 6(3): 45.
[33] MAATEN L V D, HINTON G. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9(86): 2579-2605.
[34] KHARE S K, ACHARYA U R. Adazd-Net: Automated adaptive and explainable Alzheimer’s disease detection system using EEG signals[J]. Knowledge-based systems, 2023, 278: 110858.
[35] YASUHARA A. Correlation between EEG abnormalities and symptoms of autism spectrum disorder (ASD)[J]. Brain and development, 2010, 32(10): 791-798.
[36] ALDEMIR R, DEMIRCI E, PER H, et al. Investigation of attention deficit hyperactivity disorder (ADHD) sub-types in children via EEG frequency domain analysis[J]. The international journal of neuroscience, 2018, 128(4): 349-360.
[37] ZHAO Qinglin, JIANG Hua, HU Bin, et al. Nonlinear dynamic complexity and sources of resting-state EEG in abstinent heroin addicts[J]. IEEE transactions on nanobioscience, 2017, 16(5): 349-355.
相似文献/References:
[1]陆剑锋,郭茂祖,张昱,等.基于时空约束密度聚类的停留点识别方法[J].智能系统学报,2020,15(1):59.[doi:10.11992/tis.201910026]
 LU Jianfeng,GUO Maozu,ZHANG Yu,et al.Stay point recognition method based on spatio-temporal constraint density clustering[J].CAAI Transactions on Intelligent Systems,2020,15():59.[doi:10.11992/tis.201910026]

备注/Memo

收稿日期:2024-11-8。
基金项目:国家重点研发计划项目(2022YFF1202400,2023YFF1203900).
作者简介:吴涛,讲师,博士,主要研究方向为机器学习、异常脑电分析以及模式识别。参与国家和省部级科研项目3项。发表学术论文15余篇。E-mail:wtao@fafu.edu.cn。;刘夏,硕士研究生,主要研究方向为脑电信号处理、数据挖掘。E-mail:52362047002@fafu.edu.cn。;孔祥增,教授,博士生导师,国家级人才,主要研究方向为机器学习、脑机接口系统。主持和参与国家和省部级科研项目10项。发表学术论文40余篇。E-mail:xzkong@fafu.edu.cn。
通讯作者:孔祥增. E-mail:xzkong@fafu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com