[1]田春伟,宋明键,左旺孟,等.卷积神经网络在图像超分辨上的应用[J].智能系统学报,2025,20(3):719-749.[doi:10.11992/tis.202409027]
 TIAN Chunwei,SONG Mingjian,ZUO Wangmeng,et al.Application of convolutional neural networks in image super-resolution[J].CAAI Transactions on Intelligent Systems,2025,20(3):719-749.[doi:10.11992/tis.202409027]
点击复制

卷积神经网络在图像超分辨上的应用

参考文献/References:
[1] 史振威, 雷森. 图像超分辨重建算法综述[J]. 数据采集与处理, 2020, 35(1): 1-20.
SHI Zhenwei, LEI Sen. Review of image super-resolution reconstruction[J]. Journal of data acquisition and processing, 2020, 35(1): 1-20.
[2] ZHANG Liangpei, ZHANG Hongyan, SHEN Huanfeng, et al. A super-resolution reconstruction algorithm for surveillance images[J]. Signal processing, 2010, 90(3): 848-859.
[3] CHAN K C K, ZHOU Shangchen, XU Xiangyu, et al. BasicVSR: improving video super-resolution with enhanced propagation and alignment[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans: IEEE, 2022: 5962-5971.
[4] RUKUNDO O, CAO Hanqiang. Nearest neighbor value interpolation[EB/OL]. (2012-11-08)[2024-01-01]. https://arxiv.org/abs/1211.1768v2.
[5] ELAD M, FEUER A. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images[J]. IEEE transactions on image processing, 1997, 6(12): 1646-1658.
[6] PRAJAPATI A, NAIK S, MEHTA S. Evaluation of different image interpolation algorithms[J]. International journal of computer applications, 2012, 58(12): 6-12.
[7] YANG Jianchao, WRIGHT J, HUANG T S, et al. Image super-resolution via sparse representation[J]. IEEE transactions on image processing, 2010, 19(11): 2861-2873.
[8] CHEESEMAN P, KANEFSKY B, KRAFT R, et al. Super-resolved surface reconstruction from multiple images[M]//Maximum Entropy and Bayesian Methods. Dordrecht: Springer Netherlands, 1996: 293-308.
[9] IRANI M, PELEG S. Super resolution from image sequences[C]// Proceedings 10th International Conference on Pattern Recognition. Atlantic City: IEEE, 1990: 115-120.
[10] KOMATSU T, IGARASHI T, AIZAWA K, et al. Very high resolution imaging scheme with multiple different-aperture cameras[J]. Signal processing: image communication, 1993, 5(5/6): 511-526.
[11] AGUENA M, MASCARENHAS N. Generalization of iterative restoration techniques for super-resolution[C]//2011 24th SIBGRAPI Conference on Graphics, Patterns and Images. Alagoas: IEEE, 2011: 258-265.
[12] GAO Xinbo, ZHANG Kaibing, TAO Dacheng, et al. Image super-resolution with sparse neighbor embedding[J]. IEEE transactions on image processing, 2012, 21(7): 3194-3205.
[13] VAN OUWERKERK J D. Image super-resolution survey[J]. Image and vision computing, 2006, 24(10): 1039-1052.
[14] YU Hong, XIANG Ma, HUA Huang, et al. Face image super-resolution through POCS and residue compensation[C]//2008 5th International Conference on Visual Information Engineering (VIE 2008). Xi’an: IET, 2008: 494-497.
[15] TIAN Chunwei, ZHANG Xuanyu, ZHU Qi, et al. Generative adversarial networks for image super-resolution: a survey[EB/OL]. (2022-04-28)[2024-01-01]. https://arxiv.org/abs/2204.13620v4.
[16] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(2): 295-307.
[17] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1646-1654.
[18] DONG Chao, LOY C C, TANG Xiaoou. Accelerating the super-resolution convolutional neural network[C]//Computer Vision–ECCV 2016. Amsterdam: Springer International Publishing, 2016: 391-407.
[19] CHOI J S, KIM M. A deep convolutional neural network with selection units for super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1150-1156.
[20] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1637-1645.
[21] TONG Tong, LI Gen, LIU Xiejie, et al. Image super-resolution using dense skip connections[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4809-4817.
[22] ZHANG Yulun, TIAN Yapeng, KONG Yu, et al. Residual dense network for image super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2472-2481.
[23] ZHANG Yulun, LI Kunpeng, LI Kai, et al. Image super-resolution using very deep residual channel attention networks[C]//Computer Vision–ECCV 2018. Cham: Springer International Publishing, 2018: 294-310.
[24] DAI Tao, CAI Jianrui, ZHANG Yongbing, et al. Second-order attention network for single image super-resolution[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 11057-11066.
[25] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 105-114.
[26] WANG Xintao, YU Ke, WU Shixiang, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//Computer Vision– ECCV 2018 Workshops. Cham: Springer International Publishing, 2019: 63-79.
[27] 王凡超, 丁世飞. 基于广泛激活深度残差网络的图像超分辨率重建[J]. 智能系统学报, 2022, 17(2): 440-446.
WANG Fanchao, DING Shifei. Image super-resolution reconstruction based on widely activated deep residual networks[J]. CAAI transactions on intelligent systems, 2022, 17(2): 440-446.
[28] 刘玉铠, 周登文. 基于多路特征渐进融合和注意力机制的轻量级图像超分辨率重建[J]. 智能系统学报, 2024, 19(4): 863-873.
LIU Yukai, ZHOU Dengwen. Lightweight super-resolution reconstruction via progressive multi-path feature fusion and attention mechanism[J]. CAAI transactions on intelligent systems, 2024, 19(4): 863-873.
[29] YANG Wenming, ZHANG Xuechen, TIAN Yapeng, et al. Deep learning for single image super-resolution: a brief review[J]. IEEE transactions on multimedia, 2019, 21(12): 3106-3121.
[30] SUN Jian, SUN Jian, XU Zongben, et al. Gradient profile prior and its applications in image super-resolution and enhancement[J]. IEEE transactions on image processing, 2011, 20(6): 1529-1542.
[31] WANG Zhihao, CHEN Jian, HOI S C H. Deep learning for image super-resolution: a survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(10): 3365-3387.
[32] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-12-23)[2024-01-01]. https://arxiv.org/abs/1409.1556v6.
[33] CHEN Jin, ZHU Xiaolin, VOGELMANN J E, et al. A simple and effective method for filling gaps in Landsat ETM+ SLC-off images[J]. Remote sensing of environment, 2011, 115(4): 1053-1064.
[34] PARK S C, PARK M K, KANG M G. Super-resolution image reconstruction: a technical overview[J]. IEEE signal processing magazine, 2003, 20(3): 21-36.
[35] KEYS R. Cubic convolution interpolation for digital image processing[J]. IEEE transactions on acoustics, speech, and signal processing, 1981, 29(6): 1153-1160.
[36] KIRKLAND E J. Advanced computing in electron microscopy[M]. Boston: Springer US, 1998.
[37] 周登文, 赵丽娟, 段然, 等. 基于递归残差网络的图像超分辨率重建[J]. 自动化学报, 2019, 45(6): 1157-1165.
ZHOU Dengwen, ZHAO Lijuan, DUAN Ran, et al. Image super-resolution based on recursive residual networks[J]. ACTA AUTOMATICA SINICA, 2019, 45(6): 1157-1165.
[38] REN Haoyu, EL-KHAMY M, LEE J. Image super resolution based on fusing multiple convolution neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1050-1057.
[39] TAI Ying, YANG Jian, LIU Xiaoming, et al. MemNet: a persistent memory network for image restoration[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4549-4557.
[40] HU Yanting, GAO Xinbo, LI Jie, et al. Single image super-resolution via cascaded multi-scale cross network[EB/OL]. (2018-02-24)[2024-01-01]. https://arxiv.org/abs/1802.08808v1.
[41] YAMANAKA J, KUWASHIMA S, KURITA T. Fast and accurate image super resolution by deep CNN with skip connection and network in network[EB/OL].(2017-07-18)[2024-01-01]. https://arxiv.org/abs/1707.05425.
[42] 陈子涵, 吴浩博, 裴浩东, 等. 基于自注意力深度网络的图像超分辨率重建方法[J]. 激光与光电子学进展, 2021, 58(4): 0410013.
CHEN Zihan, WU Haobo, PEI Haodong, et al. Image super-resolution reconstruction method based on self-attention deep network[J]. Laser & optoelectronics progress, 2021, 58(4): 0410013.
[43] TAI Ying, YANG Jian, LIU Xiaoming. Image super-resolution via deep recursive residual network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2790-2798.
[44] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1132-1140.
[45] WANG Xintao, XIE Liangbin, DONG Chao, et al. Real-ESRGAN: training real-world blind super-resolution with pure synthetic data[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 1905-1914.
[46] TIAN Chunwei, XU Yong, ZUO Wangmeng, et al. Coarse-to-fine CNN for image super-resolution[J]. IEEE transactions on multimedia, 2020, 23: 1489-1502.
[47] RAD M S, YU T, MUSAT C, et al. Benefiting from bicubically down-sampled images for learning real-world image super-resolution[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 1590-1599.
[48] DEMIRAY B Z, SIT M, DEMIR I. D-SRGAN: DEM super-resolutionwith generative adversarial networks[J]. SN computer science, 2021, 2(1): 48.
[49] ZHANG Lina, DAI Haidong, SANG Yu. Med-SRNet: GAN-based medical image super-resolution via high-resolution representation learning[J]. Computational intelligence and neuroscience, 2022, 2022(1): 1744969.
[50] WANG Yifan, PERAZZI F, MCWILLIAMS B, et al. A fully progressive approach to single-image super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 97701-97709.
[51] NI Min, LEI Jianjun, CONG Runmin, et al. Color-guided depth map super resolution using convolutional neural network[J]. IEEE access, 2017, 5: 26666-26672.
[52] HAN Xianhua, SHI Boxin, ZHENG Yinqiang. SSF-CNN: spatial and spectral fusion with CNN for hyperspectral image super-resolution[C]//2018 25th IEEE International Conference on Image Processing. Athens: IEEE, 2018: 2506-2510.
[53] WANG Zhaowen, LIU Ding, YANG Jianchao, et al. Deep networks for image super-resolution with sparse prior[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 370-378.
[54] HUI Zheng, WANG Xiumei, GAO Xinbo. Fast and accurate single image super-resolution via information distillation network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 723-731.
[55] YUAN Yuan, LIU Siyuan, ZHANG Jiawei, et al. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Salt Lake City: IEEE, 2018: 81401-81409.
[56] MAEDA S. Unpaired image super-resolution using pseudo-supervision[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 291-300.
[57] ZHANG Kai, ZUO Wangmeng, ZHANG Lei. Deep plug-and-play super-resolution for arbitrary blur kernels[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 1671-1681.
[58] GU Jinjin, LU Hannan, ZUO Wangmeng, et al. Blind super-resolution with iterative kernel correction[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 1604-1613.
[59] ZHOU Ruofan, SUSSTRUNK S. Kernel modeling super-resolution on real low-resolution images[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2433-2443.
[60] KLIGLER S B, SHOCHER A, IRANI M. Blind super-resolution kernel estimation using an internal-GAN[EB/OL]. (2019-09-14)[2024-01-01]. https://arxiv.arg.org/abs/1909.06581.
[61] WANG Longguang, WANG Yingqian, DONG Xiaoyu, et al. Unsupervised degradation representation learning for blind super-resolution[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10581-10590.
[62] ZHANG Kai, LIANG Jingyun, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 4771-4780.
[63] ZHANG Jiahui, LU Shijian, ZHAN Fangneng, et al. Blind image super-resolution via contrastive representation learning[EB/OL]. (2021-07-01)[2024-01-01]. https://arxiv.org/abs/2107.00708v1.
[64] WU Yixuan, LI Feng, BAI Huihui, et al. Bridging component learning with degradation modelling for blind image super-resolution[J]. IEEE transactions on multimedia, 2022(99): 1-16.
[65] CAO Xiang, LUO Yihao, XIAO Yi, et al. Blind image super-resolution based on prior correction network[J]. Neurocomputing, 2021, 463: 525-534.
[66] YAMAWAKI K, SUN Yongqing, HAN Xianhua. Blind image super resolution using deep unsupervised learning[J]. Electronics, 2021, 10(21): 2591.
[67] YAMAWAKI K, HAN Xianhua. Deep blind un-supervised learning network for single image super resolution[C]//2021 IEEE International Conference on Image Processing. Anchorage: IEEE, 2021: 1789-1793.
[68] 丁宇胜. 数字图像处理中的插值算法研究[J]. 电脑知识与技术, 2010, 6(16): 4502-4503,4506.
DING Yusheng. Interpolated algorithm research in digital image processing[J]. Computer knowledge and technology, 2010, 6(16): 4502-4503,4506.
[69] ZHANG Kai, VAN GOOL L, TIMOFTE R. Deep unfolding network for image super-resolution[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 3217-3226.
[70] FAN Yuchen, SHI Honghui, YU Jiahui, et al. Balanced two-stage residual networks for image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1157-1164.
[71] SAJJADI M S M, SCH?LKOPF B, HIRSCH M. EnhanceNet: single image super-resolution through automated texture synthesis[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 4501-4510.
[72] SHANG Taizhang, DAI Qiuju, ZHU Shengchen, et al. Perceptual extreme super resolution network with receptive field block[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 440-441.
[73] ZHAO Hengyuan, KONG Xiangtao, HE Jingwen, et al. Efficient image super-resolution using pixel attention[EB/OL]. (2020-10-02)[2024-01-01]. https://arxiv.arg.org/abs/2010.01073.
[74] HUANG Zilong, WANG Xinggang, HUANG Lichao, et al. CCNet: criss-cross attention for semantic segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 603-612.
[75] JO Y, KIM S J. Practical single-image super-resolution using look-up table[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 691-700.
[76] LIANG Jingyun, SUN Guolei, ZHANG Kai, et al. Mutual affine network for spatially variant kernel estimation in blind image super-resolution[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 4076-4085.
[77] HE Zongyao, JIN Zhi, ZHAO Yao. SRDRL: a blind super-resolution framework with degradation reconstruction loss[J]. IEEE transactions on multimedia, 2021, 24: 2877-2889.
[78] YOUM G Y, BAE S H, KIM M. Image super-resolution based on convolution neural networks using multi-channel input[C]//2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop. Bordeaux: IEEE, 2016: 1-5.
[79] INTANIYOM T, THANANPORN W, WORARATPANYA K. Enhancement of anime imaging enlargement using modified super-resolution CNN[C]//2021 13th International Conference on Information Technology and Electrical Engineering. Chiang Mai: IEEE, 2021: 226-231.
[80] VU T, NGUYEN C V, PHAM T X, et al. Fast and efficient image quality enhancement via desubpixel convolutional neural networks[C]//ECCV 2018. Munich: Springer International Publishing, 2019: 243-259.
[81] LIU Hong, LU Zhisheng, SHI Wei, et al. A fast and accurate super-resolution network using progressive residual learning[C]//2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020: 1818-1822.
[82] ZHANG Yan, SUN Yemei, LIU Shudong. Deformable and residual convolutional network for image super-resolution[J]. Applied intelligence, 2022, 52(1): 295-304.
[83] KIM G, PARK J, LEE K, et al. Unsupervised real-world super resolution with cycle generative adversarial network and domain discriminator[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1862-1871.
[84] FAN Yuchen, YU Jiahui, LIU Ding, et al. Scale-wise convolution for image restoration[EB/OL]. (2019-12-19)[2024-01-01]. https://arxiv.org/abs/1912.09028.
[85] SURYANARAYANA G, CHANDRAN K, KHALAF O I, et al. Accurate magnetic resonance image super-resolution using deep networks and Gaussian filtering in the stationary wavelet domain[J]. IEEE access, 2021, 9: 71406-71417.
[86] UMER R M, MUNIR A, MICHELONI C. A deep residual star generative adversarial network for multi-domain image super-resolution[C]//2021 6th International Conference on Smart and Sustainable Technologies. Bol and Split: IEEE, 2021: 1-5.
[87] ZHU Mingyan, DAI Tao, XIA Shutao, et al. EDKE: encoder-decoder based kernel estimation for blind image super-resolution[C]//2021 International Joint Conference on Neural Networks. Shenzhen: IEEE, 2021: 1-7.
[88] WEI Yunxuan, GU Shuhang, LI Yawei, et al. Unsupervised real-world image super resolution via domain-distance aware training[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13385-13394.
[89] LI Yue, LIU Dong, LI Houqiang, et al. Convolutional neural network-based block up-sampling for intra frame coding[J]. IEEE transactions on circuits and systems for video technology, 2018, 28(9): 2316-2330.
[90] MAO X, SHEN C, YANG Y B. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections[J]. Advances in neural information processing systems, 2016, 29.
[91] LAI Weisheng, HUANG Jiabin, AHUJA N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(11): 2599-2613.
[92] SHI Jun, LI Zheng, YING Shihui, et al. MR image super-resolution via wide residual networks with fixed skip connection[J]. IEEE journal of biomedical and health informatics, 2019, 23(3): 1129-1140.
[93] LI Zhen, YANG Jinglei, LIU Zheng, et al. Feedback network for image super-resolution[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3862-3871.
[94] ZENG Kai, DING Shifei, JIA Weikuan. Single image super-resolution using a polymorphic parallel CNN[J]. Applied intelligence, 2019, 49(1): 292-300.
[95] HARIS M, SHAKHNAROVICH G, UKITA N. Deep back-projection networks for super-resolution[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1664-1673.
[96] YANG Xin, MEI Haiyang, ZHANG Jiqing, et al. DRFN: deep recurrent fusion network for single-image super-resolution with large factors[J]. IEEE transactions on multimedia, 2019, 21(2): 328-337.
[97] ZHONG Zhisheng, SHEN Tiancheng, YANG Yibo, et al. Joint sub-bands learning with clique structures for wavelet domain super-resolution[EB/OL]. (2018-10-25)[2024-01-01]. https://arxiv.org/abs/1809.04508v3.
[98] WANG Yifan, WANG Lijun, WANG Hongyu, et al. End-to-end image super-resolution via deep and shallow convolutional networks[J]. IEEE access, 2019, 7: 31959-31970.
[99] LI Juncheng, FANG Faming, MEI Kangfu, et al. Multi-scale residual network for image super-resolution[C]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 527-542.
[100] TAN Congming, CHENG Shuli, WANG Liejun. Efficient image super-resolution via self-calibrated feature fuse[J]. Sensors, 2022, 22(1): 329.
[101] CHENG Jianxin, KUANG Qiuming, SHEN Chenkai, et al. ResLap: generating high-resolution climate prediction through image super-resolution[J]. IEEE access, 2020, 8: 39623-39634.
[102] JIA Sen, WANG Zhihao, LI Qingquan, et al. Multiattention generative adversarial network for remote sensing image super-resolution[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 5624715.
[103] CHEN Yuantao, XIA Runlong, YANG Kai, et al. MFFN: image super-resolution via multi-level features fusion network[J]. The visual computer, 2024, 40(2): 489-504.
[104] ZHANG Xiaomin. Uncertainty-driven mixture convolution and transformer network for remote sensing image super-resolution[J]. Scientific reports, 2024, 14: 9435.
[105] BAI Haomou, LIANG Xiao. A very lightweight image super-resolution network[J]. Scientific reports, 2024, 14(1): 13850.
[106] DARGAHI S, AGHAGOLZADEH A, EZOJI M. Single image super-resolution by cascading parallel-structure units through a deep-shallow CNN[J]. Optik, 2023, 286: 171001.
[107] XU Xiangyu, SUN Deqing, PAN Jinshan, et al. Learning to super-resolve blurry face and text images[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 251-260.
[108] TAO G, JI X, WANG W, et al. Spectrum-to-kernel translation for accurate blind image super-resolution[J]. Advances in neural information processing systems, 2021, 34: 22643-22654.
[109] FANG Zhenxuan, DONG Weisheng, LI Xin, et al. Uncertainty learning in kernel estimation for multi-stage blind image super-resolution[C]//ECCV 2022. Tel Aviv: Springer Nature Switzerland, 2022: 144-161.
[110] DU Yanbin, JIA Ruisheng, CUI Zhe, et al. X-ray image super-resolution reconstruction based on a multiple distillation feedback network[J]. Applied intelligence, 2021, 51(7): 5081-5094.
[111] SHI Wenzhe, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1874-1883.
[112] SONG Zhaoyang, ZHAO Xiaoqiang, JIANG Hongmei. Gradual deep residual network for super-resolution[J]. Multimedia tools and applications, 2021, 80(7): 9765-9778.
[113] JIANG Pengfei, LIN Weiguo, SHANG Wenqian. Single image super-resolution model based on improved sub-pixel convolutional neural network[C]//2021 IEEE International Conference on Power Electronics, Computer Applications. Shenyang: IEEE, 2021: 132-136.ems, 2020, 205: 106235.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[4]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[5]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[6]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[7]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[8]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[9]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[10]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[11]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[12]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[13]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[14]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[15]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[16]汪鸿翔,柳培忠,骆炎民,等.高斯核函数卷积神经网络跟踪算法[J].智能系统学报,2018,13(3):388.[doi:10.11992/tis.201612040]
 WANG Hongxiang,LIU Peizhong,LUO Yanmin,et al.Convolutional neutral network tracking algorithm accelerated by Gaussian kernel function[J].CAAI Transactions on Intelligent Systems,2018,13():388.[doi:10.11992/tis.201612040]
[17]冯小荣,惠康华,柳振东.基于卷积特征和贝叶斯分类器的人脸识别[J].智能系统学报,2018,13(5):769.[doi:10.11992/tis.201706052]
 FENG Xiaorong,HUI Kanghua,LIU Zhendong.Face recognition based on convolution feature and Bayes classifier[J].CAAI Transactions on Intelligent Systems,2018,13():769.[doi:10.11992/tis.201706052]
[18]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[19]胡越,罗东阳,花奎,等.关于深度学习的综述与讨论[J].智能系统学报,2019,14(1):1.[doi:10.11992/tis.201808019]
 HU Yue,LUO Dongyang,HUA Kui,et al.Overview on deep learning[J].CAAI Transactions on Intelligent Systems,2019,14():1.[doi:10.11992/tis.201808019]
[20]孙必慎,石武祯,姜峰.计算视觉核心问题:自然图像先验建模研究综述[J].智能系统学报,2019,14(1):71.[doi:10.11992/tis.201804019]
 SUN Bishen,SHI Wuzhen,JIANG Feng.Core problem in computer vision: survey of natural image prior models[J].CAAI Transactions on Intelligent Systems,2019,14():71.[doi:10.11992/tis.201804019]

备注/Memo

收稿日期:2024-9-19。
基金项目:国家自然科学基金项目(62201468).
作者简介:田春伟,教授,博士生导师,主要研究方向为图像复原和识别、图像生成。发表学术论文80余篇,7篇ESI高被引论文、3篇ESI热点论文、4篇顶刊封面论文、1篇国际模式识别会刊Pattern Recognition的Best Paper Award、1项中国图象图形学学会自然科学奖二等奖(排名第1)、广东省自然科学奖一等奖。E-mail:chunweitian@hit.edu.cn。;张艳宁,教授,博士生导师,主要研究方向为图像处理、模式识别、计算机视觉与智能信息处理。承担国家重点基础研究发展计划项目、国家自然科学基金重点项目等国家级项目40余项,发表学术论文百余篇。E-mail: ynzhang@nwpu.edu.cn。;张师超,教授,博士生导师,主要研究方向为数据挖掘、机器学习。主持国家自然科学基金、国家重点基础研究发展计划项目、国家高技术研究发展计划项目、澳大利亚ARC(Australian Research Council)国家级项目共12项,主持省部级项目10余项。发表学术论文270余篇。E-mail:zhangsc@mailbox.gxnu.edu.cn。
通讯作者:张师超. E-mail:zhangsc@mailbox.gxnu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com