[1]丛维仪,郑卓然,贾修一.一种用于联合低光增强和人脸超分的深度学习网络[J].智能系统学报,2025,20(1):109-117.[doi:10.11992/tis.202406029]
 CONG Weiyi,ZHENG Zhuoran,JIA Xiuyi.A deep learning network for joint low-light enhancement and face spuer-resolution[J].CAAI Transactions on Intelligent Systems,2025,20(1):109-117.[doi:10.11992/tis.202406029]
点击复制

一种用于联合低光增强和人脸超分的深度学习网络

参考文献/References:
[1] KOWALSKI M, NARUNIEC J, TRZCINSKI T. Deep alignment network: a convolutional neural network for robust face alignment[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 2034-2043.
[2] 贺怀清, 陈琴, 惠康华. 基于深度可分离沙漏网络的快速人脸对齐[J]. 计算机工程与设计, 2021, 42(8): 2316-2323.
HE Huaiqing, CHEN Qin, HUI Kanghua. Fast face alignment based on deep separable hourglass network[J]. Computer engineering and design, 2021, 42(8): 2316-2323.
[3] LIU Yaojie, JOURABLOO A, REN W, et al. Dense face alignment[C]//2017 IEEE International Conference on Computer Vision Workshops. Venice: IEEE, 2017: 1619-1628.
[4] LIN Jinpeng, YANG Hao, CHEN Dong, et al. Face parsing with RoI tanh-warping[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5647-5656.
[5] LIU Yinglu, SHI Hailin, SHEN Hao, et al. A new dataset and boundary-attention semantic segmentation for face parsing[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020, 34(7): 11637-11644.
[6] ZHENG Qingping, DENG Jiankang, ZHU Zheng, et al. Decoupled multi-task learning with cyclical self-regulation for face parsing[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 4146-4155.
[7] 屈东东, 贺利乐, 何林. 改进的轻量化人脸识别算法[J]. 智能系统学报, 2023, 18(3): 544-551.
QU Dongdong, HE Lile, HE Lin. Improved lightweight face recognition algorithm[J]. CAAI transactions on intelligent systems, 2023, 18(3): 544-551.
[8] 狄岚, 矫慧文, 梁久祯. 稀疏综合字典学习的小样本人脸识别[J]. 智能系统学报, 2021, 16(2): 218-227.
DI Lan, JIAO Huiwen, LIANG Jiuzhen. Sparse comprehensive dictionary learning for small-sample face recognition[J]. CAAI transactions on intelligent systems, 2021, 16(2): 218-227.
[9] 章毅, 吕嘉仪, 兰星, 等. 结合面部动作单元感知的三维人脸重建算法[J]. 软件学报, 2024, 35(5): 2176-2191.
ZHANG Yi, LYU Jiayi, LAN Xing, et al. AU-aware algorithm for 3D facial reconstruction[J]. Journal of software, 2024, 35(5): 2176-2191.
[10] 黄丰智, 范鹏, 范智瀚, 等. 基于散斑结构光编码的三维人脸重建方法研究[J]. 计算机应用与软件, 2023, 40(9): 218-221,228.
HUANG Fengzhi, FAN Peng, FAN Zhihan, et al. 3d face reconstruction method based on speckle structured light coding[J]. Computer applications and software, 2023, 40(9): 218-221,228.
[11] ZHANG Tianke, CHU Xuangeng, LIU Yunfei, et al. Accurate 3D face reconstruction with facial component tokens[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 8999-9008.
[12] CHEN Chaofeng, GONG Dihong, WANG Hao, et al. Learning spatial attention for face super-resolution[J]. IEEE transactions on image processing, 2021, 30: 1219-1231.
[13] CHEN Yu, TAI Ying, LIU Xiaoming, et al. FSRNet: end-to-end learning face super-resolution with facial priors[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2492-2501.
[14] GAO Guangwei, XU Zixiang, LI Juncheng, et al. CTCNet: a CNN-Transformer cooperation network for face image super-resolution[J]. IEEE transactions on image processing, 2023, 32: 1978-1991.
[15] GUO Kehua, HU Min, REN Sheng, et al. Deep illumination-enhanced face super-resolution network for low-light images[J]. ACM transactions on multimedia computing, communications, and applications, 2022, 18(3): 1-19.
[16] DING Xin, HU Ruimin, WANG Zhongyuan. Face enhancement and hallucination in the wild[J]. Neural computing and applications, 2023, 35(3): 2399-2412.
[17] ABDULLAH-AL-WADUD M, KABIR M H, ALI AKBER DEWAN M, et al. A dynamic histogram equalization for image contrast enhancement[C]//2007 Digest of Technical Papers International Conference on Consumer Electronics. Las Vegas: IEEE, 53(2): 593-600.
[18] GUO Xiaojie, LI Yu, LING Haibin. LIME: low-light image enhancement via illumination map estimation[J]. IEEE transactions on image processing, 2017, 26(2): 982-993.
[19] IBRAHIM H, PIK KONG N S. Brightness preserving dynamic histogram equalization for image contrast enhancement[J]. IEEE transactions on consumer electronics, 2007, 53(4): 1752-1758.
[20] LI Mading, LIU Jiaying, YANG Wenhan, et al. Structure-revealing low-light image enhancement via robust retinex model[J]. IEEE transactions on image processing, 2018, 27(6): 2828-2841.
[21] 赵明华, 汶怡春, 都双丽, 等. 基于照度与场景纹理注意力图的低光图像增强[J]. 中国图象图形学报, 2024, 29(4): 862-874.
ZHAO Minghua, WEN Yichun, DU Shuangli, et al. Low-light image enhancement algorithm based on illumination and scene texture attention map[J]. Journal of image and graphics, 2024, 29(4): 862-874.
[22] 吴巨峰, 赵训刚, 周强, 等. 基于对比学习的低光照图像增强[J]. 计算机科学, 2023, 50(S1): 525-530.
WU Jufeng, ZHAO Xungang, ZHOU Qiang, et al. Contrastive learning for low-light image enhancement[J]. Computer science, 2023, 50(S1): 525-530.
[23] ZHANG Yonghua, GUO Xiaojie, MA Jiayi, et al. Beyond brightening low-light images[J]. International journal of computer vision, 2021, 129(4): 1013-1037.
[24] ZHU Anqi, ZHANG Lin, SHEN Ying, et al. Zero-shot restoration of underexposed images via robust retinex decomposition[C]//2020 IEEE International Conference on Multimedia and Expo. London: IEEE, 2020: 1-6.
[25] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern recognition, 2017, 61: 650-662.
[26] WEI Chen, WANG Wenjing, YANG Wenhan, et al. Deep retinex decomposition for low-light enhancement[C]//Proceedings of 29th British Machine Vision Conference. London: BMVA, 2018: 155-155.
[27] WANG Liwen, LIU Zhisong, SIU Wanchi, et al. Lightening network for low-light image enhancement[J]. IEEE transactions on image processing, 2020, 29: 7984-7996.
[28] HE Jingwen, SHI Wu, CHEN Kai, et al. GCFSR: a generative and controllable face super resolution method without facial and GAN priors[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1879-1888.
[29] 姚肇亮, 刘宇男, 张姗姗, 等. 基于多尺度特征融合的属性已知人脸图像超分辨率[J]. 南京理工大学学报, 2022, 46(5): 571-578.
YAO Zhaoliang, LIU Yunan, ZHANG Shanshan, et al. Multi-scale feature fusion based attribute-aware face image super-resolution[J]. Journal of Nanjing University of Science and Technology, 2022, 46(5): 571-578.
[30] 陈泓佑, 陈帆, 和红杰, 等. 基于多任务对抗和抗噪对抗学习的人脸超分辨率算法[J]. 模式识别与人工智能, 2022, 35(10): 863-880.
CHEN Hongyou, CHEN Fan, HE Hongjie, et al. Face super-resolution algorithm based on multi-task adversarial and antinoise adversarial learning[J]. Pattern recognition and artificial intelligence, 2022, 35(10): 863-880.
[31] MENON S, DAMIAN A, HU Shijia, et al. PULSE: self-supervised photo upsampling via latent space exploration of generative models[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2434-2442.
[32] WANG Chenyang, JIANG Junjun, ZHONG Zhiwei, et al. Spatial-frequency mutual learning for face super-resolution[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 22356-22366.
[33] LU Tao, WANG Yuanzhi, ZHANG Yanduo, et al. Face hallucination via split-attention in split-attention network[C]//Proceedings of the 29th ACM International Conference on Multimedia. Virtual Event: ACM, 2021: 5501-5509.
[34] YANG Tao, REN Peiran, XIE Xuansong, et al. GAN prior embedded network for blind face restoration in the wild[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 672-681.
[35] WANG Yuanzhi, LU Tao, YAO Yuan, et al. Learning to hallucinate face in the dark[J]. IEEE transactions on multimedia, 2023, 26: 2314-2326.
[36] HAN Kai, WANG Yunhe, CHEN Hanting, et al. A survey on vision transformer[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(1): 87-110.
[37] NEWELL A, YANG Kaiyu, DENG Jia. Stacked hourglass networks for human pose estimation[C]//Proceedings of the 14th European Conference on Computer Vision. London: Springer, 2016: 483-499.
[38] TU Zhengzhong, TALEBI H, ZHANG Han, et al. MaxViT: multi-axis vision Transformer[C]//Proceedings of the 17th European Conference on Computer Vision. London: Springer, 2022: 459-479.
[39] KONG Fangyuan, LI Mingxi, LIU Songwei, et al. Residual local feature network for efficient super-resolution[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 765-775.
[40] LIU Jie, ZHANG Wenjie, TANG Yuting, et al. Residual feature aggregation network for image super-resolution[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 2356-2365.
[41] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[42] ZHANG Kaipeng, ZHANG Zhanpeng, LI Zhifeng, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE signal processing letters, 2016, 23(10): 1499-1503.
[43] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 1132-1140.
[44] LIANG Jingyun, CAO Jiezhang, SUN Guolei, et al. SwinIR: image restoration using swin transformer[C]//2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021: 1833-1844.
[45] WANG Hang, CHEN Xuanhong, NI Bingbing, et al. Omni aggregation networks for lightweight image super-resolution[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 22378-22387.
[46] RASHEED M T, SHI Daming. LSR: Lightening super-resolution deep network for low-light image enhancement[J]. Neurocomputing, 2022, 505: 263-275.

备注/Memo

收稿日期:2024-6-18。
基金项目:国家自然科学基金项目(62176123, 62476130).
作者简介:丛维仪,硕士研究生,主要研究方向为图像增强。E-mail:congweiyi@njust.edu.cn。;郑卓然,博士研究生,主要研究方向为深度学习和图像增强。E-mail:zhengzr@njust.edu.cn。;贾修一,教授,博士生导师, 中国计算机学会杰出会员,主要研究方向为机器学习、粒计算和计算机视觉。主持国家自然科学基金项目4项。发表学术论文100余篇。E-mail:jiaxy@njust.edu.cn。
通讯作者:贾修一. E-mail:jiaxy@njust.edu.cn

更新日期/Last Update: 2025-01-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com