[1]丛维仪,郑卓然,贾修一.一种用于联合低光增强和人脸超分的深度学习网络[J].智能系统学报,2025,20(1):109-117.[doi:10.11992/tis.202406029]
CONG Weiyi,ZHENG Zhuoran,JIA Xiuyi.A deep learning network for joint low-light enhancement and face spuer-resolution[J].CAAI Transactions on Intelligent Systems,2025,20(1):109-117.[doi:10.11992/tis.202406029]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第1期
页码:
109-117
栏目:
学术论文—机器感知与模式识别
出版日期:
2025-01-05
- Title:
-
A deep learning network for joint low-light enhancement and face spuer-resolution
- 作者:
-
丛维仪, 郑卓然, 贾修一
-
南京理工大学 计算机科学与工程学院, 江苏 南京 210094
- Author(s):
-
CONG Weiyi, ZHENG Zhuoran, JIA Xiuyi
-
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
-
- 关键词:
-
人脸超分辨率; 低光图像增强; 监督学习; 随机掩码; 损失函数; 深度学习; 局部特征提取; 全局特征提取
- Keywords:
-
face super resolution; low-light image enhancement; supervised learning; random mask; loss function; deep learning; local feature extraction; global feature extraction
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202406029
- 摘要:
-
在低光环境下,人脸图像增强是许多任务的重要恢复方法。然而,现有的低光环境下人脸超分辨率方法通常依赖于低光增强和超分算法的序列建模。遗憾的是,由于优化目标之间的差异,使用这种方法来增强人脸图像很容易导致伪影或噪声。为了应对这一挑战,本文提出了一个端到端的低光人脸图像超分辨率网络(low-light face super resolution network, LFSRNet)。该网络由浅层特征提取、深层特征提取和特征过滤上采样3个模块组成。首先浅层特征模块将输入的低光、低分辨率人脸图像映射到特征空间。随后,深度特征提取模块对其进行亮度校正并细化结构。最后,特征过滤上采样模块处理提取到的特征并重建人脸图像。此外,为了更好地重建丢失的面部细节本文还设计了一个损失函数faceMaskLoss。大量实验证明了所提模型的有效性。
- Abstract:
-
In low-light environments, face image enhancement is used as a vital recovery method for many tasks. However, existing methods for face super-resolution in low-light environments usually relied on sequence modeling that combines low-light enhancement and super-resolution algorithms. Unfortunately, using this method to enhance a face image easily led to artifacts or noise because of the differences between the optimization objectives. To tackle this challenge, we proposed LFSRNet, an end-to-end low-light face image super-resolution network. Our network consisted of three modules: shallow feature extraction, deep feature extraction, and feature filtering upsampling. The shallow feature module initially mapped the input low-light, low-resolution face image into feature space. Subsequently, the deep feature extraction module performed luminance correction and refined the structure. Finally, the feature filtering upsampling module processed the extracted features and reconstructed the face image. Additionally, in order to better reconstruct the lost facial details, we also designed a loss function faceMaskLoss. Extensive experiments demonstrate the effectiveness of our proposed model.
备注/Memo
收稿日期:2024-6-18。
基金项目:国家自然科学基金项目(62176123, 62476130).
作者简介:丛维仪,硕士研究生,主要研究方向为图像增强。E-mail:congweiyi@njust.edu.cn。;郑卓然,博士研究生,主要研究方向为深度学习和图像增强。E-mail:zhengzr@njust.edu.cn。;贾修一,教授,博士生导师, 中国计算机学会杰出会员,主要研究方向为机器学习、粒计算和计算机视觉。主持国家自然科学基金项目4项。发表学术论文100余篇。E-mail:jiaxy@njust.edu.cn。
通讯作者:贾修一. E-mail:jiaxy@njust.edu.cn
更新日期/Last Update:
2025-01-05