[1]肖添龙,徐计,王国胤.基于偏序关系的多视图多粒度图表示学习框架[J].智能系统学报,2025,20(1):243-254.[doi:10.11992/tis.202406010]
XIAO Tianlong,XU Ji,WANG Guoyin.A multi-view and multi-granularity graph representation learning framework based on partial order relations[J].CAAI Transactions on Intelligent Systems,2025,20(1):243-254.[doi:10.11992/tis.202406010]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第1期
页码:
243-254
栏目:
人工智能院长论坛
出版日期:
2025-01-05
- Title:
-
A multi-view and multi-granularity graph representation learning framework based on partial order relations
- 作者:
-
肖添龙1,2, 徐计1, 王国胤3
-
1. 贵州大学 省部共建公共大数据国家重点实验室, 贵州 贵阳 550025;
2. 贵州大学 计算机科学与技术学院, 贵州 贵阳 550025;
3. 重庆邮电大学 计算智能重庆市重点实验室, 重庆 400065
- Author(s):
-
XIAO Tianlong1,2, XU Ji1, WANG Guoyin3
-
1. State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China;
2. College of Computer Science and Technology, Guizhou University, Guiyang 550025, China;
3. Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
-
- 关键词:
-
图神经网络; 图池化; 多粒度; 偏序关系; 节点分类任务; 图表示学习; 半监督学习; 图嵌入
- Keywords:
-
graph neural networks; graph pooling; multi-granularity; partial order relationships; node classification task; graph representation learning; semi-supervised learning; graph embedding
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202406010
- 摘要:
-
图池化作为图神经网络中重要的组件,在获取图的多粒度信息的过程中扮演了重要角色。而当前的图池化操作均以平等地位看待数据点,普遍未考虑利用邻域内数据之间的偏序关系,从而造成图结构信息破坏。针对此问题,本文提出一种基于偏序关系的多视图多粒度图表示学习框架(multi-view and multi-granularity graph representation learning based on partial order relationships, MVMGr-PO),它通过从节点特征视图、图结构视图以及全局视图对节点进行综合评分,进而基于节点之间的偏序关系进行下采样操作。相比于其他图表示学习方法,MVMGr-PO可以有效地提取多粒度图结构信息,从而可以更全面地表征图的内在结构和属性。此外,MVMGr-PO可以集成多种图神经网络架构,包括GCN(graph convolutional network)、GAT(graph attention network)以及GraphSAGE(graph sample and aggregate)等。通过在6个数据集上进行实验评估,与现有基线模型相比,MVMGr-PO在分类准确率上有明显提升。
- Abstract:
-
Graph pooling, as a crucial component of graph neural networks (GNNs), plays a vital role in capturing multi-granularity information of graphs. However, current graph pooling operations typically treat data points equally, often neglecting the partial order relationships among data within neighborhoods, which leads to the disruption of graph structural information. To address this issue, we propose a novel framework for multi-view and multi-granularity graph representation learning based on partial order relationships, named MVMGr-PO. This framework comprehensively scores nodes from the perspectives of node feature view, graph structure view, and global view, and then performs down-sampling operations based on the partial order relationships among nodes. Compared with other graph representation learning methods, MVMGr-PO effectively extracts multi-granularity graph structural information, thus providing a more comprehensive representation of the intrinsic structure and attributes of the graph. Additionally, MVMGr-PO can integrate various graph neural network (GNN) architectures, including graph convolutional network (GCN), graph attention network (GAT), and graph sample and aggregate (GraphSAGE). Experimental evaluations on six datasets demonstrate that compared with existing baseline models, MVMGr-PO significantly improves classification accuracy.
备注/Memo
收稿日期:2024-6-7。
基金项目:国家自然科学基金项目(62366008, 61966005, 62221005).
作者简介:肖添龙,硕士研究生,主要研究方向为图神经网络、粒计算和机器学习。E-mail:gs.tlxiao22@gzu.edu.cn。;徐计,特聘教授,博士,主要研究方向为数据挖掘、粒计算和机器学习。主持国家自然科学基金项目2项,主持大型互联网企业横向项目2项,出版学术专著1部,发表学术论文20余篇。E-mail:jixu@gzu.edu.cn。;王国胤,教授,博士生导师,国家级人才,重庆师范大学校长。主要研究方向为粗糙集、粒计算、数据挖掘、认知计算、大数据、人工智能。曾任国际粗糙集学会(IRSS)理事长,现任中国人工智能学会(CAAI)副理事长、中国计算机学会(CCF)理事、重庆市人工智能学会(CQAAI)理事长,IRSS/CAAI/CCF会士。获国内外发明专利授权20余项,出版学术专著和教材20多部(含编著),发表学术论文300余篇,论著被他人引用10 000多次。E-mail:wanggy@cqupt.edu.cn。
通讯作者:徐计. E-mail:jixu@gzu.edu.cn
更新日期/Last Update:
2025-01-05