[1]肖添龙,徐计,王国胤.基于偏序关系的多视图多粒度图表示学习框架[J].智能系统学报,2025,20(1):243-254.[doi:10.11992/tis.202406010]
 XIAO Tianlong,XU Ji,WANG Guoyin.A multi-view and multi-granularity graph representation learning framework based on partial order relations[J].CAAI Transactions on Intelligent Systems,2025,20(1):243-254.[doi:10.11992/tis.202406010]
点击复制

基于偏序关系的多视图多粒度图表示学习框架

参考文献/References:
[1] SCHMARJE L, SANTAROSSA M, SCHR?DER S M, et al. A survey on semiself and unsupervised learning for image classification[J]. IEEE access, 2021, 9: 82146-82168.
[2] 陈洛轩, 林成创, 郑招良, 等. Transformer在计算机视觉场景下的研究综述[J]. 计算机科学, 2023, 50(12): 130-147.
CHEN Luoxuan, LIN Chengchuang, ZHENG Zhaoliang, et al. Review of transformer in computer vision[J]. Computer science, 2023, 50(12): 130-147.
[3] LAURIOLA I, LAVELLI A, AIOLLI F. An introduction to deep learning in natural language processing: models, techniques, and tools[J]. Neurocomputing, 2022, 470: 443-456.
[4] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics: theory and experiment, 2008, 2008(10): 10008.
[5] SAKAI M, NAGAYASU K, SHIBUI N, et al. Prediction of pharmacological activities from chemical structures with graph convolutional neural networks[J]. Scientific reports, 2021, 11(1): 525.
[6] GAO Chen, WANG Xiang, HE Xiangnan, et al. Graph neural networks for recommender system[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining. Virtual Event: ACM, 2022: 1623-1625.
[7] 吴国栋, 查志康, 涂立静, 等. 图神经网络推荐研究进展[J]. 智能系统学报, 2020, 15(1): 14-24.
WU Guodong, ZHA Zhikang, TU Lijing, et al. Research advances in graph neural network recommendation[J]. CAAI transactions on intelligent systems, 2020, 15(1): 14-24.
[8] 刘彦北, 马夕然, 王雯. 可信的图神经网络节点分类方法[J]. 天津工业大学学报, 2024, 43(1): 82-88.
LIU Yanbei, MA Xiran, WANG Wen. Node classification method based on trusted graph neural network[J]. Journal of Tiangong university, 2024, 43(1): 82-88.
[9] 东昱晓, 柯庆, 吴斌. 基于节点相似性的链接预测[J]. 计算机科学, 2011, 38(7): 162-164,199.
DONG Yuxiao, KE Qing, WU Bin. Link prediction based on node similarity[J]. Computer science, 2011, 38(7): 162-164,199.
[10] 王兆慧, 沈华伟, 曹婍, 等. 图分类研究综述[J]. 软件学报, 2022, 33(1): 171-192.
WANG Zhaohui, SHEN Huawei, CAO Qi, et al. Survey on graph classification[J]. Journal of software, 2022, 33(1): 171-192.
[11] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[EB/OL]. (2017-06-07)[2024-06-07]. https://arxiv.org/abs/1706.02216v4.
[12] CHIANG Weilin, LIU Xuanqing, SI Si, et al. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019: 257-266.
[13] YING Z, YOU Jiaxuan, MORRIS C, et al. Hierarchical graph representation learning with differentiable pooling[J]. Advances in neural information processing systems, 2018, 31: 1-11.
[14] ZHONG Zhiqiang, LI Chengte, PANG Jun. Multi-grained semantics-aware graph neural networks[J]. IEEE transactions on knowledge and data engineering, 2023, 35(7): 7251-7262.
[15] GAO H, JI S. Graph U-Nets[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(9): 4948-4960.
[16] ZHANG Zhen, BU Jiajun, ESTER M, et al. Hierarchical multi-view graph pooling with structure learning[J]. IEEE transactions on knowledge and data engineering, 2023, 35(1): 545-559.
[17] RANJAN E, SANYAL S, TALUKDAR P. ASAP: adaptive structure aware pooling for learning hierarchical graph representations[J]. Proceedings of the AAAI conference on artificial intelligence, 2020, 34(4): 5470-5477.
[18] 张蕾, 钱峰, 赵姝, 等. 基于多粒度结构的网络表示学习[J]. 智能系统学报, 2019, 14(6): 1233-1242.
ZHANG Lei, QIAN Feng, ZHAO Shu, et al. Network representation learning based on multi-granularity structure[J]. CAAI transactions on intelligent systems, 2019, 14(6): 1233-1242.
[19] SUN Haichao, WANG Guoyin, LIU Qun. Graph neural networks with multi-granularity pooling[C]//2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems. Chengdu: IEEE, 2022: 114-118.
[20] LIANG Jiongqian, GURUKAR S, PARTHASARATHY S. MILE: a multi-level framework for scalable graph embedding[J]. Proceedings of the international AAAI conference on web and social media, 2021, 15: 361-372.
[21] STANOVIC S, GAüZèRE B, BRUN L. Maximal independent vertex set applied to Graph pooling[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2022: 11-21.
[22] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09)[2024-06-07]. https://arxiv.org/abs/1609.02907v4.
[23] WU Junran, CHEN Xueyan, XU Ke, et al. Structural entropy guided graph hierarchical pooling[C]//International conference on machine learning. New York: PMLR, 2022: 24017-24030.
[24] LEE J, LEE I, KANG J. Self-attention graph pooling[C]//International conference on machine learning. New York: PMLR, 2019: 3734-3743.
[25] JIANG Jianjian, LEI Fangyuan, DAI Qingyun, et al. Graph pooling in graph neural networks with node feature correlation[C]//Proceedings of the 3rd International Conference on Data Science and Information Technology. Xia’men: ACM, 2020: 105-110.
[26] KIM Y. Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2014: 1746-1751.
[27] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. New York: ACM, 2014: 701-710.
[28] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 855-864.
[29] Veli?kovi? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2017-10-30)[2024-06-07]. https://arxiv.org/abs/1710.10903.
[30] FEY M, LENSSEN J E. Fast graph representation learning with PyTorch geometric[EB/OL]. (2019-03-06) [2024-06-07]. https://arxiv.org/abs/1903.02428v3.
[31] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[EB/OL]. (2014-12-22) [2024-06-07]. https://arxiv.org/abs/1412.6980v9.
[32] WATTS D J, STROGATZ S H. Collective dynamics of ‘small-world’ networks[J]. Nature, 1998, 393(6684): 440-442.
[33] GROVER A, LESKOVEC J. Node2vec: scalable featurelearning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
[34] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. Stat, 2017, 1050(20): 39-41.
[35] FEI M, LENSSEN J E. Fast graph representation learning with PyTorch geometric[C]//ICLR Workshop on Representation Learning on Graphs and Manifolds. Appleton: ICLR, 2019: 1-9.
[36] KINGMA D P, Ba J. Adam: a method for stochastic optimization[EB/OL]. (2022-12-22)[2024-06-07]. https://arxiv.org/abs/1412.6980.
相似文献/References:
[1]吴国栋,查志康,涂立静,等.图神经网络推荐研究进展[J].智能系统学报,2020,15(1):14.[doi:10.11992/tis.201908034]
 WU Guodong,ZHA Zhikang,TU Lijing,et al.Research advances in graph neural network recommendation[J].CAAI Transactions on Intelligent Systems,2020,15():14.[doi:10.11992/tis.201908034]
[2]张勇,高大林,巩敦卫,等.用于关系抽取的注意力图长短时记忆神经网络[J].智能系统学报,2021,16(3):518.[doi:10.11992/tis.202008036]
 ZHANG Yong,GAO Dalin,GONG Dunwei,et al.Attention graph long short-term memory neural network for relation extraction[J].CAAI Transactions on Intelligent Systems,2021,16():518.[doi:10.11992/tis.202008036]
[3]周俊,张志强,曹月恬,等.地理位置和时间感知的表示学习框架[J].智能系统学报,2021,16(5):909.[doi:10.11992/tis.202104011]
 ZHOU Jun,ZHANG Zhiqiang,CAO Yuetian,et al.A geography and time aware representation learning framework[J].CAAI Transactions on Intelligent Systems,2021,16():909.[doi:10.11992/tis.202104011]
[4]卢毅,陈亚冉,赵冬斌,等.关键点图对比图像分类方法[J].智能系统学报,2023,18(1):36.[doi:10.11992/tis.202112001]
 LU Yi,CHEN Yaran,ZHAO Dongbin,et al.Keypoint-based graph contrastive neural network for image classification[J].CAAI Transactions on Intelligent Systems,2023,18():36.[doi:10.11992/tis.202112001]
[5]车飞虎,张大伟,邵朋朋,等.基于四元数门控图神经网络的脚本事件预测[J].智能系统学报,2023,18(1):138.[doi:10.11992/tis.202203042]
 CHE Feihu,ZHANG Dawei,SHAO Pengpeng,et al.Script event prediction based on a quaternion-gated graph neural network[J].CAAI Transactions on Intelligent Systems,2023,18():138.[doi:10.11992/tis.202203042]
[6]孟祥福,温晶,李子函,等.多重注意力指导下的异构图嵌入方法[J].智能系统学报,2023,18(4):688.[doi:10.11992/tis.202204006]
 MENG Xiangfu,WEN Jing,LI Zihan,et al.Heterogeneous graph embedding method guided by the multi-attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18():688.[doi:10.11992/tis.202204006]
[7]周贤琛,马扬,程光权,等.战场目标实体类型识别的鲁棒图神经网络方法[J].智能系统学报,2023,18(6):1156.[doi:10.11992/tis.202111025]
 ZHOU Xianchen,MA Yang,CHENG Guangquan,et al.Robust graph neural network method for target entity type recognition in a battlefield environment[J].CAAI Transactions on Intelligent Systems,2023,18():1156.[doi:10.11992/tis.202111025]
[8]曹汉童,陈璟.融合Doc2vec与GCN的多类型蛋白质相互作用预测方法[J].智能系统学报,2023,18(6):1165.[doi:10.11992/tis.202212029]
 CAO Hantong,CHEN Jing.Prediction of multitype protein interactions combining Doc2vec and GCN[J].CAAI Transactions on Intelligent Systems,2023,18():1165.[doi:10.11992/tis.202212029]
[9]刘晓光,李梅.基于深度学习的药物-靶标相互作用预测研究综述[J].智能系统学报,2024,19(3):494.[doi:10.11992/tis.202308024]
 LIU Xiaoguang,LI Mei.A survey of deep learning-based drug-target interaction prediction[J].CAAI Transactions on Intelligent Systems,2024,19():494.[doi:10.11992/tis.202308024]
[10]王闪闪,巩长庆,秦华锋,等.基于深度学习的K近邻图迭代静脉识别算法研究[J].智能系统学报,2024,19(5):1149.[doi:10.11992/tis.202307009]
 WANG Shanshan,GONG Changqing,QIN Huafeng,et al.Vein recognition algorithm combining K-nearest neighbor and graph iterative based on deep learning[J].CAAI Transactions on Intelligent Systems,2024,19():1149.[doi:10.11992/tis.202307009]

备注/Memo

收稿日期:2024-6-7。
基金项目:国家自然科学基金项目(62366008, 61966005, 62221005).
作者简介:肖添龙,硕士研究生,主要研究方向为图神经网络、粒计算和机器学习。E-mail:gs.tlxiao22@gzu.edu.cn。;徐计,特聘教授,博士,主要研究方向为数据挖掘、粒计算和机器学习。主持国家自然科学基金项目2项,主持大型互联网企业横向项目2项,出版学术专著1部,发表学术论文20余篇。E-mail:jixu@gzu.edu.cn。;王国胤,教授,博士生导师,国家级人才,重庆师范大学校长。主要研究方向为粗糙集、粒计算、数据挖掘、认知计算、大数据、人工智能。曾任国际粗糙集学会(IRSS)理事长,现任中国人工智能学会(CAAI)副理事长、中国计算机学会(CCF)理事、重庆市人工智能学会(CQAAI)理事长,IRSS/CAAI/CCF会士。获国内外发明专利授权20余项,出版学术专著和教材20多部(含编著),发表学术论文300余篇,论著被他人引用10 000多次。E-mail:wanggy@cqupt.edu.cn。
通讯作者:徐计. E-mail:jixu@gzu.edu.cn

更新日期/Last Update: 2025-01-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com