[1]夏桂华,朱文序,刘浩岩,等.无人艇集群自组织协同围捕控制算法研究[J].智能系统学报,2025,20(1):162-171.[doi:10.11992/tis.202405025]
XIA Guihua,ZHU Wenxu,LIU Haoyan,et al.Research on collaborative self-organizing surrounding control algorithm of USV swarm[J].CAAI Transactions on Intelligent Systems,2025,20(1):162-171.[doi:10.11992/tis.202405025]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第1期
页码:
162-171
栏目:
学术论文—智能系统
出版日期:
2025-01-05
- Title:
-
Research on collaborative self-organizing surrounding control algorithm of USV swarm
- 作者:
-
夏桂华, 朱文序, 刘浩岩, 刘兴, 姜享利
-
哈尔滨工程大学 智能科学与工程学院, 黑龙江 哈尔滨 150006
- Author(s):
-
XIA Guihua, ZHU Wenxu, LIU Haoyan, LIU Xing, JIANG Xiangli
-
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150006, China
-
- 关键词:
-
无人艇; 集群控制; 协同围捕; 多智能体; 模型预测控制; 输入–状态稳定性; 状态观测器; 图论
- Keywords:
-
unmanned surface vessel; swarm control; cooperative surrounding; multi-agent system; model predictive control; input-to-state stability; state observer; graph theory
- 分类号:
-
TP242
- DOI:
-
10.11992/tis.202405025
- 摘要:
-
无人艇(unmanned surface vessel, USV)集群协同围捕是无人艇的重要应用场景之一,文章针对无人艇集群协同围捕任务设计了一种自组织控制算法。考虑到被围对象的加速度未知且仅部分集群成员可对其测量的情况,文章设计了分布式目标状态观测器(distributed target state observer, DTSO),实现围捕过程中各成员对被捕对象状态的一致性观测。设计了一种自组织围捕引导律,解决了围捕算法需要为成员预分配期望位置的问题。设计了分布式非线性模型预测控制(distributed nonlinear model predictive control, DNMPC),解决了执行器饱和与艇间距离约束的问题,实现了满足避碰安全的协同围捕控制。文章分析了控制系统的输入–状态稳定性(input-to-state stability, ISS),并通过多组不同初始状态和改变成员数量的仿真实验,验证了围捕算法的有效性。
- Abstract:
-
Unmanned surface vehicle (USV) swarm cooperative surrounding is one of the important application scenarios of USVs. This paper designs a self-organizing control algorithm for USV swarm cooperative surrounding tasks. Considering the unknown acceleration of the target to be encircled and the fact that only some members of the swarm can measure its position and velocity, this paper proposes a distributed target state observer (DTSO) to achieve consistency observation of the target state among swarm members during the surrounding process. Subsequently, a self-organizing surrounding guidance law is designed to address the issue of pre-allocating expected positions for members in the surrounding algorithm. Finally, a distributed nonlinear model predictive control (DNMPC) is designed to resolve the problems of actuator saturation and inter-boat distance constraints, achieving collaborative surrounding control that meets collision avoidance safety. The paper analyzes the input-to-state stability (ISS) of the control system and validates the effectiveness of the surrounding algorithm through simulation experiments with multiple sets of different initial states and varying numbers of members.
备注/Memo
收稿日期:2024-5-20。
基金项目:国家自然科学基金项目(62403159);国家自然科学基金项目(52171302);中国科协青年人才托举工程项目(2022QNRC001);新时代龙江优秀博士学位论文项目(LJYXL2022-004).
作者简介:夏桂华,教授,博士生导师,主要研究方向为船舶运动建模与仿真、智能船舶技术和多无人艇协同作业。享受国务院特殊津贴,获省部级以上奖励10余项,发表学术论文 90 余篇。E-mail:xiaguihua_heu@163.com。;朱文序,博士研究生,主要研究方向为无人艇路径规划技术、无人艇轨迹跟踪控制和无人艇集群协同控制。E-mail:zhuwenxuheu@foxmail.com。;刘浩岩,硕士研究生,主要研究方向为基于数据驱动的无人艇运动模型优化算法研究。E-mail:liuhaoyan@hrbeu.edu.cn。
通讯作者:夏桂华. E-mail:xiaguihua_heu@163.com
更新日期/Last Update:
2025-01-05