[1]邓翠艳,齐小刚.一种注意力机制LSTM的5G网络地铁节电方法[J].智能系统学报,2024,19(5):1309-1318.[doi:10.11992/tis.202403038]
DENG Cuiyan,QI Xiaogang.5G network subway power-saving method based on attention mechanism LSTM[J].CAAI Transactions on Intelligent Systems,2024,19(5):1309-1318.[doi:10.11992/tis.202403038]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第5期
页码:
1309-1318
栏目:
人工智能院长论坛
出版日期:
2024-09-05
- Title:
-
5G network subway power-saving method based on attention mechanism LSTM
- 作者:
-
邓翠艳1, 齐小刚2
-
1. 晋中信息学院, 山西 晋中 030800;
2. 西安电子科技大学 数学与统计学院, 陕西 西安710071
- Author(s):
-
DENG Cuiyan1, QI Xiaogang2
-
1. Jinzhong College of Information, Jinzhong 030800, China;
2. School of Mathematics and Statistics, Xidian University, Xi’an 710071, China
-
- 关键词:
-
注意力机制; 5G网络节电; LSTM; 节电策略; 5G功耗; 地铁节电; 地铁用电; 5G用电
- Keywords:
-
attention mechanism; 5G network power saving; LSTM; power-saving strategy; 5G power loss; subway power-saving; subway power utilization; 5G power utilization
- 分类号:
-
TP311.13
- DOI:
-
10.11992/tis.202403038
- 文献标志码:
-
2024-08-29
- 摘要:
-
随着5G网络的规模化建设应用,5G基站设备的大功耗及高能耗成为运营商急需解决的成本问题。针对该问题,提出了一种基于注意力机制LSTM的5G网络地铁节电方法,该方法首先根据地铁特殊业务场景通过特征工程建立了与5G业务场景相关联的业务关键特征,为了尽可能挖掘长时序特征,建立了基于注意力机制的LSTM时序预测模型,实现了小时粒度5G基站业务量的精确预测;其次基于多项式回归模型建立了5G地铁业务量与基站配置量的函数模型,形成节电策略。最后,实现5G基站节电效能的有效评估,通过建立5G基站用电量与基站设备BBU、HUB、RRU等硬件设备功耗函数模型,实现节电策略实施后节电效能的有效评估。实验结果表明,对比传统的5G电力供应模型,该方法能够节省43%的电能。
- Abstract:
-
The large-scale construction and application of the 5G network have made the large power consumption of 5G base station equipment an urgent cost problem for operators. A 5G network subway power-saving method based on attention mechanism LSTM is proposed in this study to address this problem. First, business-critical features related to 5G business scenarios are established by means of feature engineering based on unique subway operating scenarios. An attention mechanism-based LSTM time-series prediction model is established to realize an accurate forecast of hourly base station traffic volume for exploiting long time-order features as far as possible. Then, a function model for the relationship between 5G subway traffic volume and base station configuration is established based on a polynomial regression model to establish power-saving strategies. Finally, the power-saving efficiency of the 5G base station is evaluated by establishing function models for the power consumption of the 5G base station and base station equipment, such as BBU, HUB, and RRU, after implementing power-saving strategies. Experimental results show that the proposed method can achieve a 43% improvement in power-saving efficiency compared with the traditional 5G power supply model.
备注/Memo
收稿日期:2024-3-14。
基金项目:2023年度山西省高等学校科技创新项目(2023L517).
作者简介:邓翠艳,讲师,主要研究方向为数据挖掘、大数据与人工智能。主持省教育规划课题2项,授权发明专利2项,发表学术论文5篇。E-mail:13434146632@139.com;齐小刚,教授,博士生导师,博士,主要研究方向为复杂系统建模与仿真、网络算法设计与应用。主持国家自然科学基金项目、十三五预研项目等国家和省部级项目20余项。授权发明专利19项,软件著作权4项,发表学术论文100余篇。 E-mail: xgqi@xidian.edu.cn。
通讯作者:邓翠艳. E-mail:13934146632@139.com
更新日期/Last Update:
2024-09-05