[1]邓翠艳,齐小刚.一种注意力机制LSTM的5G网络地铁节电方法[J].智能系统学报,2024,19(5):1309-1318.[doi:10.11992/tis.202403038]
 DENG Cuiyan,QI Xiaogang.5G network subway power-saving method based on attention mechanism LSTM[J].CAAI Transactions on Intelligent Systems,2024,19(5):1309-1318.[doi:10.11992/tis.202403038]
点击复制

一种注意力机制LSTM的5G网络地铁节电方法

参考文献/References:
[1] FOURATI H, MAALOUL R, TRABELSI N, et al. An efficient energy saving scheme using reinforcement learning for 5G and beyond in H-CRAN[J]. Ad hoc networks, 2024, 155: 103406.
[2] 蒙占杰, 周丽丽, 李季. 4G/5G网络低碳发展思考[J]. 通信世界, 2022(13): 41-43.
MENG Zhanjie, ZHOU Lili, LI Ji. Thinking on low-carbon development of 4G/5G network[J]. Communications world, 2022(13): 41-43.
[3] 官磊, 丁洋, 李锐杰, 等. 面向“双碳” 的5G网络节能技术[J]. 电信科学, 2022, 38(4): 167-174.
GUAN Lei, DING Yang, LI Ruijie, et al. Network energy saving technologies for green 5G[J]. Telecommunications science, 2022, 38(4): 167-174.
[4] 徐丹, 曾宇, 孟维业, 等. AI使能的5G节能技术[J]. 电信科学, 2021, 37(5): 32-41.
XU Dan, ZENG Yu, MENG Weiye, et al. AI-enabled 5G energy-saving technology[J]. Telecommunications science, 2021, 37(5): 32-41.
[5] 苗晓春, 陈旭黎. 基于AI的5G基站节能应用[J]. 长江信息通信, 2024, 37(5): 152-154.
MIAO Xiaochun, CHEN Xuli. Application of energy saving solution for 5G base station based on AI[J]. Changjiang information & communications, 2024, 37(5): 152-154.
[6] 王素英, 贾海蓉, 申陈宁, 等. 改进GAN模型在基站流量预测及5G节能中的应用[J]. 太原理工大学学报, 2024, 55(4): 743-750.
WANG Suying, JIA Hairong, SHEN Chenning, et al. Application of GAN model with DE-GWO optimized LSTM for 5G energy consumption control[J]. Journal of Taiyuan University of technology, 2024, 55(4): 743-750.
[7] ZHENG Jiahuan, XIANG Yong. 5G base station energy saving method based on personalized scenarios[J]. Mobile communication, 2021, 45(03): 91-96.
[8] 翟敏, 宋耀宁. 5G移动通信网络智能节能应用方案[J]. 长江信息通信, 2023, 36(5): 221-224.
ZHAI Min, SONG Yaoning. Intelligent energy-saving application scheme for 5G mobile communication network[J]. Changjiang information & communications, 2023, 36(5): 221-224.
[9] PUTHENPURA S. Demonstrates SMaRT-5GTM open source energy savings platform at Fyuz[EB/OL]. (2023-10-04)[2024-3-14]. https://opennetworking.org/wp-content/uploads/2023/10/Fyuz-Webinar-Slides.pdf.
[10] 刘亮亮. “双碳” 视角下的5G全生命周期网络节能分析[J]. 数字通信世界, 2024(4): 67-69.
LIU Liangliang. Energy saving analysis of 5G full lifecycle network from the perspective of “dual carbon”[J]. Digital communication world, 2024(4): 67-69.
[11] FOURATI H, MAALOUL R, CHAARI L. A survey of 5G network systems: challenges and machine learning approaches[J]. International journal of machine learning and cybernetics, 2021, 12(2): 385-431.
[12] MALATHY S, JAYARAJAN P, OJUKWU H, et al. A review on energy management issues for future 5G and beyond network[J]. Wireless networks, 2021, 27(4): 2691-2718.
[13] 卜寅, 孙宏, 周瑜, 等. 基于AI+大数据的4G/5G无线基站智能协同节能系统的研究和应用[J]. 邮电设计技术, 2023(1): 1-6.
BU Yin, SUN Hong, ZHOU Yu, et al. Research and application of 4G/5G wireless base station intelligent cooperative energy saving system based on AI+Big data[J]. Designing techniques of posts and telecommunications, 2023(1): 1-6.
[14] POST B, BORST S, van den Berg H. A self-organizing base station sleeping and user association strategy for dense cellular networks[J]. Wireless networks, 2021, 27(1): 307-322.
[15] IQBAL A, THAM M L, CHANG Y C. Double deep Q-network-based energy-efficient resource allocation in cloud radio access network[J]. IEEE access, 2021, 9: 20440-20449.
[16] 罗新军, 许步扬. 面向广电的5G网络节能技术方案[J]. 电信工程技术与标准化, 2022, 35(1): 10-13.
LUO Xinjun, XU Buyang. Energy-saving technology solutions for 5G of China Broadcasting Network[J]. Telecom engineering technics and standardization, 2022, 35(1): 10-13.
[17] 王建斌, 王淑春, 廖尚金, 等. 基于DCNN-LSTM负荷预测算法的5G基站节能系统研究[J]. 电信科学, 2023, 39(4): 133-141.
WANG Jianbin, WANG Shuchun, LIAO Shangjin, et al. Research on 5G base station energy saving system based on DCNN-LSTM load prediction algorithm[J]. Telecommunications science, 2023, 39(4): 133-141.
[18] 高珍, 靳剑东, 李志强, 等. 基于AI的4G/5G基站协同节电方法研究与应用[J]. 电信工程技术与标准化, 2022, 35(9): 11-17.
GAO Zhen, JIN Jiandong, LI Zhiqiang, et al. Research and application of power saving solution for 4G/5G base station collaborative based on AI[J]. Telecom engineering technics and standardization, 2022, 35(9): 11-17.
[19] 魏云良, 张颖聪. 浅谈基于5G网络的端到端节能部署策略[J]. 江苏通信, 2023, 39(1): 19-22.
WEI Yunliang, ZHANG Yingcong. Discussion on end-to-end energy-saving deployment strategy based on 5G network[J]. Jiangsu communication, 2023, 39(1): 19-22.
[20] 梁祖坤, 易小明. 制造企业节电增效的技术与管理协同推进机制[J]. 上海节能, 2023(12): 1788-1798.
LIANG Zukun, YI Xiaoming. Collaborative promotion mechanism of technology and management for energy saving and efficiency improvement in manufacturing enterprises[J]. Shanghai energy saving, 2023(12): 1788-1798.
[21] KALITA P, SELVAMUTHU D. Stochastic modeling for energy efficiency in modified directional discontinuous reception for LTE-5G networks[J]. International journal of communication systems, 2023, 36(6): e5434.
[22] S S, MISHRA S, HOTA C. Joint QoS and energy-efficient resource allocation and scheduling in 5G Network Slicing[J]. Computer communications, 2023, 202: 110-123.
[23] Khan W U, Li X, Ihsan A, et al. Energy efficiency maximization for beyond 5G NOMA-enabled heterogeneous networks[J]. Peer-to-peer networking and applications, 2021, 14(5): 3250-3264.
[24] Shuvo M S A, Munna M A R, Sarker S, et al. Energy-efficient scheduling of small cells in 5G: A meta-heuristic approach[J]. Journal of network and computer applications, 2021, 178: 102986.
[25] 田四梅, 沈卫红, 杨嬛. 基于差异化场景的5G智能节电技术研究[J]. 通信与信息技术, 2023(S1): 86-89.
TIAN Simei, SHEN Weihong, YANG Xuan. Research on energy saving rechnology of 5G base station based on differentiated scenarios[J]. Communication & information technology, 2023(S1): 86-89.
[26] 赖琮霖, 李力卡, 曾焕浩. 5G基站智能硬关断节能实施方案与应用[J]. 电信工程技术与标准化, 2023, 36(S1): 96-100.
LAI Conglin, LI Lika, ZENG Huanhao. Implementation method and application of smart hardware shutdown energy saving for 5G base stations[J]. Telecom engineering technics and standardization, 2023, 36(S1): 96-100.
[27] 曾碧卿, 韩旭丽, 王盛玉, 等. 层次化双注意力神经网络模型的情感分析研究[J]. 智能系统学报, 2020, 15(3): 460.
ZENG Biqing, HAN Xuli, WANG Shengyu, et al. Hierarchical double-attention neural networks for sentiment classification[J]. CAAI transactions on intelligent systems, 2020, 15(3): 460.
[28] 黄文科. 面向5G的无线网络节能技术研究[J]. 长江信息通信, 2022, 35(10): 6-8.
HUANG Wenke. Research on energy saving technology for 5G-oriented wireless network[J]. Changjiang information & communications, 2022, 35(10): 6-8.
[29] GUO Wanying, KOO J, SIDDIQUI I F, et al. QoS-aware energy-efficient MicroBase Station deployment for 5G-enabled HetNets[J]. Journal of king Saud University - computer and information sciences, 2022, 34(10): 10487-10495.
相似文献/References:
[1]申凯,王晓峰,杨亚东.基于双向消息链路卷积网络的显著性物体检测[J].智能系统学报,2019,14(6):1152.[doi:10.11992/tis.201812003]
 SHEN Kai,WANG Xiaofeng,YANG Yadong.Salient object detection based on bidirectional message link convolution neural network[J].CAAI Transactions on Intelligent Systems,2019,14():1152.[doi:10.11992/tis.201812003]
[2]赵文清,程幸福,赵振兵,等.注意力机制和Faster RCNN相结合的绝缘子识别[J].智能系统学报,2020,15(1):92.[doi:10.11992/tis.201907023]
 ZHAO Wenqing,CHENG Xingfu,ZHAO Zhenbing,et al.Insulator recognition based on attention mechanism and Faster RCNN[J].CAAI Transactions on Intelligent Systems,2020,15():92.[doi:10.11992/tis.201907023]
[3]申翔翔,侯新文,尹传环.深度强化学习中状态注意力机制的研究[J].智能系统学报,2020,15(2):317.[doi:10.11992/tis.201809033]
 SHEN Xiangxiang,HOU Xinwen,YIN Chuanhuan.State attention in deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15():317.[doi:10.11992/tis.201809033]
[4]曾碧卿,韩旭丽,王盛玉,等.层次化双注意力神经网络模型的情感分析研究[J].智能系统学报,2020,15(3):460.[doi:10.11992/tis.201812017]
 ZENG Biqing,HAN Xuli,WANG Shengyu,et al.Hierarchical double-attention neural networks for sentiment classification[J].CAAI Transactions on Intelligent Systems,2020,15():460.[doi:10.11992/tis.201812017]
[5]莫宏伟,田朋.基于注意力融合的图像描述生成方法[J].智能系统学报,2020,15(4):740.[doi:10.11992/tis.201910039]
 MO Hongwei,TIAN Peng.An image caption generation method based on attention fusion[J].CAAI Transactions on Intelligent Systems,2020,15():740.[doi:10.11992/tis.201910039]
[6]鲍维克,袁春.面向推荐系统的分期序列自注意力网络[J].智能系统学报,2021,16(2):353.[doi:10.11992/tis.202005028]
 BAO Weike,YUAN Chun.Recommendation system with long-term and short-term sequential self-attention network[J].CAAI Transactions on Intelligent Systems,2021,16():353.[doi:10.11992/tis.202005028]
[7]洪恺临,曹江涛,姬晓飞.改进Center-Net网络的自主喷涂机器人室内窗户检测[J].智能系统学报,2021,16(3):425.[doi:10.11992/tis.202005016]
 HONG Kailin,CAO Jiangtao,JI Xiaofei.Indoor window detection of autonomous spraying robot based on improved CenterNet network[J].CAAI Transactions on Intelligent Systems,2021,16():425.[doi:10.11992/tis.202005016]
[8]张勇,高大林,巩敦卫,等.用于关系抽取的注意力图长短时记忆神经网络[J].智能系统学报,2021,16(3):518.[doi:10.11992/tis.202008036]
 ZHANG Yong,GAO Dalin,GONG Dunwei,et al.Attention graph long short-term memory neural network for relation extraction[J].CAAI Transactions on Intelligent Systems,2021,16():518.[doi:10.11992/tis.202008036]
[9]陈新元,谢晟祎,陈庆强,等.结合卷积特征提取和路径语义的知识推理[J].智能系统学报,2021,16(4):729.[doi:10.11992/tis.202008007]
 CHEN Xinyuan,XIE Shengyi,CHEN Qingqiang,et al.Knowledge-based inference on convolutional feature extraction and path semantics[J].CAAI Transactions on Intelligent Systems,2021,16():729.[doi:10.11992/tis.202008007]
[10]张恒,何文玢,何军,等.医学知识增强的肿瘤分期多任务学习模型[J].智能系统学报,2021,16(4):739.[doi:10.11992/tis.202010005]
 ZHANG Heng,HE Wenbin,HE Jun,et al.Multi-task tumor stage learning model with medical knowledge enhancement[J].CAAI Transactions on Intelligent Systems,2021,16():739.[doi:10.11992/tis.202010005]

备注/Memo

收稿日期:2024-3-14。
基金项目:2023年度山西省高等学校科技创新项目(2023L517).
作者简介:邓翠艳,讲师,主要研究方向为数据挖掘、大数据与人工智能。主持省教育规划课题2项,授权发明专利2项,发表学术论文5篇。E-mail:13434146632@139.com;齐小刚,教授,博士生导师,博士,主要研究方向为复杂系统建模与仿真、网络算法设计与应用。主持国家自然科学基金项目、十三五预研项目等国家和省部级项目20余项。授权发明专利19项,软件著作权4项,发表学术论文100余篇。 E-mail: xgqi@xidian.edu.cn。
通讯作者:邓翠艳. E-mail:13934146632@139.com

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com