[1]陆军,王文豪,杜宏劲.基于特征融合和网络采样的点云配准[J].智能系统学报,2025,20(3):621-630.[doi:10.11992/tis.202403022]
LU Jun,WANG Wenhao,DU Hongjin.Point cloud registration based on feature fusion and network sampling[J].CAAI Transactions on Intelligent Systems,2025,20(3):621-630.[doi:10.11992/tis.202403022]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第3期
页码:
621-630
栏目:
学术论文—机器感知与模式识别
出版日期:
2025-05-05
- Title:
-
Point cloud registration based on feature fusion and network sampling
- 作者:
-
陆军, 王文豪, 杜宏劲
-
哈尔滨工程大学 智能科学与工程学院, 黑龙江 哈尔滨 150001
- Author(s):
-
LU Jun, WANG Wenhao, DU Hongjin
-
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
点云配准; 特征融合; 深度学习; 网络采样; 三维视觉; 局部特征; 全局特征; 特征提取
- Keywords:
-
point cloud registration; feature fusion; deep learning; network sampling; 3D vision; local feature; global feature; feature extraction
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202403022
- 摘要:
-
针对点云配准过程中,下采样时容易丢失关键点、影响配准精度的问题,本文提出一种基于特征融合和网络采样的配准方法,提高了配准的精度和速度。在PointNet分类网络基础上,引入小型注意力机制,设计一种基于深度学习网络的关键点提取方法,将局部特征和全局特征融合,得到混合特征的特征矩阵。通过深度学习实现对应矩阵求解中相关参数的自动优化,最后利用加权奇异值分解(singular value decomposition,SVD)得到变换矩阵,完成配准。在ModelNet40数据集上的实验表明,和最远点采样相比,所提算法耗时减少45.36%;而配准结果和基于特征学习的鲁棒点匹配(robust point matching using learned features,RPM-Net)相比,平移矩阵均方误差降低5.67%,旋转矩阵均方误差降低13.1%。在自制点云数据上的实验,证实了算法在真实物体上配准的有效性。
- Abstract:
-
To solve the issue of easily losing key points during lower sampling, which affects the registration accuracy during point cloud registration, a registration method is proposed based on network sampling and feature fusion, and this method improves registration accuracy and speed. Based on the PointNet classification network, we design a deep learning (DL) network-based method for key point extraction. The method fuses local features with global features to obtain the feature matrix with fixed characteristics and uses DL to automatically optimize the parameters when calculating the corresponding matrix. Finally, we use weighted singular value decomposition to obtain the transformation matrix and complete the registration. Our experiments using the ModelNet40 dataset reveal that the time consumed for the process is reduced by 45.36% compared with that consumed by farthest point sampling. Compared with the RPM-Net algorithm, the mean square errors of the translation and rotation matrices obtained by the proposed method are reduced by 5.67% and 13.1%, respectively. Further, the designed model was subjected to experiments, which proved the effectiveness of the algorithm in registering real objects.
备注/Memo
收稿日期:2024-3-12。
基金项目:黑龙江省自然科学基金项目(F201123).
作者简介:陆军,教授,博士生导师,主要研究方向为计算机视觉、图像处理、高性能船舶控制。主持和承担国家及省部级科研项目多项,参与或承担的项目获国防科学技术进步奖一等奖3项、省部级二等奖1项、省部级三等奖3项,发表学术论文80余篇。E-mail: lujun0260@sina.com。;王文豪,硕士研究生,主要研究方向为三维机器视觉、图像处理。E-mail:wenhao-wang@qq.com。;杜宏劲,硕士研究生,主要研究方向为三维点云、图像处理、目标识别。E-mail:dhjmuchen@163.com。
通讯作者:陆军. E-mail:lujun0260@sina.com
更新日期/Last Update:
1900-01-01