[1]陆军,王文豪,杜宏劲.基于特征融合和网络采样的点云配准[J].智能系统学报,2025,20(3):621-630.[doi:10.11992/tis.202403022]
 LU Jun,WANG Wenhao,DU Hongjin.Point cloud registration based on feature fusion and network sampling[J].CAAI Transactions on Intelligent Systems,2025,20(3):621-630.[doi:10.11992/tis.202403022]
点击复制

基于特征融合和网络采样的点云配准

参考文献/References:
[1] 张新钰, 邹镇洪, 李志伟, 等. 面向自动驾驶目标检测的深度多模态融合技术[J]. 智能系统学报, 2020, 15(4): 758-771.
ZHANG Xinyu, ZOU Zhenhong, LI Zhiwei, et al. Deep multi-modal fusion in object detection for autonomous driving[J]. CAAI transactions on intelligent systems, 2020, 15(4): 758-771.
[2] CHEN Kai, HONG Lanqing, XU Hang, et al. MultiSiam: self-supervised multi-instance Siamese representation learning for autonomous driving[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 7526-7534.
[3] MA Gang, WEI Hui. A novel sketch-based framework utilizing contour cues for efficient point cloud registration[J]. IEEE transactions on geoscience and remote sensing, 2023, 61: 5703616.
[4] PEREZ-GONZALEZ J, LUNA-MADRIGAL F, PI?A-RAMIREZ O. Deep learning point cloud registration based on distance features[J]. IEEE Latin America transactions, 2019, 17(12): 2053-2060.
[5] SEGAL A, HAEHNEL D, THRUN S. Generalized-ICP[C]//Robotics: Science and Systems. Seattle: MIT Press, 2009.
[6] YANG Jiaolong, LI Hongdong, JIA Yunde. Go-ICP: solving 3D registration efficiently and globally optimally[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 1457-1464.
[7] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//2009 IEEE International Conference on Robotics and Automation. Kobe: IEEE, 2009: 3212-3217.
[8] SANG Mengting, WANG Wei, PAN Yani. RGB-ICP method to calculate ground three-dimensional deformation based on point cloud from airborne LiDAR[J]. Remote sensing, 2022, 14(19): 4851.
[9] SHI Weijing, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1708-1716.
[10] XIE Yifan, ZHU Jihua, LI Shiqi, et al. Cross-modal information-guided network using contrastive learning for point cloud registration[J]. IEEE robotics and automation letters, 2024, 9(1): 103-110.
[11] 陆军, 邵红旭, 王伟, 等. 基于关键点特征匹配的点云配准方法[J]. 北京理工大学学报, 2020, 40(4): 409-415.
LU Jun, SHAO Hongxu, WANG Wei, et al. Point cloud registration method based on key point extraction with small overlap[J]. Transactions of Beijing Institute of Technology, 2020, 40(4): 409-415.
[12] ISHIHARA K, KANERVISTO A, MIURA J, et al. Multi-task learning with attention for end-to-end autonomous driving[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Nashville: IEEE, 2021: 2902-2911.
[13] WANG Li, DU Liang, YE Xiaoqing, et al. Depth-conditioned dynamic message propagation for monocular 3D object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 454-463.
[14] YAN Zihao, YI Zimu, HU Ruizhen, et al. Consistent two-flow network for tele-registration of point clouds[J]. IEEE transactions on visualization and computer graphics, 2022, 28(12): 4304-4318.
[15] DENG Haowen, BIRDAL T, ILIC S. PPFNet: global context aware local features for robust 3D point matching[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 195-205.
[16] CHOY C, GWAK J, SAVARESE S. 4D spatio-temporal ConvNets: minkowski convolutional neural networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3070-3079.
[17] BAI Xuyang, LUO Zixin, ZHOU Lei, et al. D3Feat: joint learning of dense detection and description of 3D local features[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6358-6366.
[18] HUANG Shengyu, GOJCIC Z, USVYATSOV M, et al. PREDATOR: registration of 3D point clouds with low overlap[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 4267-4276.
[19] LU Weixin, WAN Guowei, ZHOU Yao, et al. DeepVCP: an end-to-end deep neural network for point cloud registration[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 12-21.
[20] YEW Z J, LEE G H. RPM-net: robust point matching using learned features[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11821-11830.
[21] SARODE V, LI Xueqian, GOFORTH H, et al. PCRNet: point cloud registration network using PointNet encoding[EB/OL]. (2019-11-04)[2024-01-01]. https://arxiv.org/abs/1908.07906v2.
[22] GE Xuming, HU Han, WU Bo. Image-guided registration of unordered terrestrial laser scanning point clouds for urban scenes[J]. IEEE transactions on geoscience and remote sensing, 2019, 57(11): 9264-9276.
[23] YUAN Hanjie, HE Yang, DONG Limeng, et al. Multi-spectral registration fusion based on laser point cloud[C]//2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms. Changchun: IEEE, 2022: 50-53.
[24] WANG Huaqiang, HUANG Lu, YU Kang, et al. Deep-learning-based multiview RGBD sensor system for 3-D face point cloud registration[J]. IEEE sensors letters, 2023, 7(5): 7001804.
[25] HE Chenhang, ZENG Hui, HUANG Jianqiang, et al. Structure aware single-stage 3D object detection from point cloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11870-11879.
[26] WU Yue, YAO Qianlin, FAN Xiaolong, et al. PANet: a point-attention based multi-scale feature fusion network for point cloud registration[J]. IEEE transactions on instrumentation and measurement, 2023, 72: 2512913.
[27] KADAM P, ZHANG Min, LIU Shan, et al. R-PointHop: a green, accurate, and unsupervised point cloud registration method[J]. IEEE transactions on image processing, 2022, 31: 2710-2725.
[28] WANG Yue, SOLOMON J. Deep closest point: learning representations for point cloud registration[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3522-3531.
[29] YANG Zetong, SUN Yanan, LIU Shu, et al. 3DSSD: point-based 3D single stage object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11037-11045.
[30] QI C R, YI Li, SU Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. (2017-06-07)[2024-01-01]. https://arxiv.org/abs/1706.02413v1.
[31] WANG Yongqiang, ZHANG Di, NI Lihua, et al. A novel keypoint detection method for radar point cloud registration[J]. IEEE sensors letters, 2023, 7(12): 3503204.
相似文献/References:
[1]孙倩茹,王文敏,刘宏.视频序列的人体运动描述方法综述[J].智能系统学报,2013,8(3):189.
 SUN Qianru,WANG Wenmin,LIU Hong.Study of human action representation in video sequences[J].CAAI Transactions on Intelligent Systems,2013,8():189.
[2]吴茜茵,严云洋,杜静,等.多特征融合的火焰检测算法[J].智能系统学报,2015,10(2):240.[doi:10.3969/j.issn.1673-4785.201406022]
 WU Xiyin,YAN Yunyang,DU Jing,et al.Fire detection based on fusion of multiple features[J].CAAI Transactions on Intelligent Systems,2015,10():240.[doi:10.3969/j.issn.1673-4785.201406022]
[3]张毅,陈起,罗元.室内环境下移动机器人三维视觉SLAM[J].智能系统学报,2015,10(4):615.[doi:10.3969/j.issn.1673-4785.201504003]
 ZHANG Yi,CHEN Qi,LUO Yuan.Three dimensional visual SLAM for mobile robots in indoor environments[J].CAAI Transactions on Intelligent Systems,2015,10():615.[doi:10.3969/j.issn.1673-4785.201504003]
[4]孙劲光,孟凡宇.一种特征加权融合人脸识别方法[J].智能系统学报,2015,10(6):912.[doi:10.11992/tis.201509025]
 SUN Jinguang,MENG Fanyu.Face recognition by weighted fusion of facial features[J].CAAI Transactions on Intelligent Systems,2015,10():912.[doi:10.11992/tis.201509025]
[5]柳培忠,阮晓虎,田震,等.一种基于多特征融合的视频目标跟踪方法[J].智能系统学报,2014,9(3):319.[doi:10.3969/j.issn.1673-4785.201309085]
 LIU Peizhong,RUAN Xiaohu,TIAN Zhen,et al.A video tracking method based on object multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2014,9():319.[doi:10.3969/j.issn.1673-4785.201309085]
[6]路子祥,屠黎阳,祖辰,等.基于脑连接网络的阿尔茨海默病临床变量值预测[J].智能系统学报,2017,12(3):355.[doi:10.11992/tis.201607020]
 LU Zixiang,TU Liyang,ZU Chen,et al.Prediction of clinical variables in Alzheimer’s disease using brain connective networks[J].CAAI Transactions on Intelligent Systems,2017,12():355.[doi:10.11992/tis.201607020]
[7]吴钟强,张耀文,商琳.基于语义特征的多视图情感分类方法[J].智能系统学报,2017,12(5):745.[doi:10.11992/tis.201706026]
 WU Zhongqiang,ZHANG Yaowen,SHANG Lin.Multi-view sentiment classification of microblogs based on semantic features[J].CAAI Transactions on Intelligent Systems,2017,12():745.[doi:10.11992/tis.201706026]
[8]王成济,罗志明,钟准,等.一种多层特征融合的人脸检测方法[J].智能系统学报,2018,13(1):138.[doi:10.11992/tis.201707018]
 WANG Chengji,LUO Zhiming,ZHONG Zhun,et al.Face detection method fusing multi-layer features[J].CAAI Transactions on Intelligent Systems,2018,13():138.[doi:10.11992/tis.201707018]
[9]李亚飞,董红斌.基于卷积神经网络的遥感图像分类研究[J].智能系统学报,2018,13(4):550.[doi:10.11992/tis.201706078]
 LI Yafei,DONG Hongbin.Classification of remote-sensing image based on convolutional neural network[J].CAAI Transactions on Intelligent Systems,2018,13():550.[doi:10.11992/tis.201706078]
[10]贾鹤鸣,朱传旭,张森,等.对偶树复小波与空域信息的手势识别分类研究[J].智能系统学报,2018,13(4):619.[doi:10.11992/tis.201708003]
 JIA Heming,ZHU Chuanxu,ZHANG Sen,et al.Research on gesture recognition and classification of dual-tree complex wavelet and spatial information[J].CAAI Transactions on Intelligent Systems,2018,13():619.[doi:10.11992/tis.201708003]
[11]郭大伟,李景浩,陆军.三维点云配准的多尺度深度学习方法[J].智能系统学报,2024,19(4):817.[doi:10.11992/tis.202304007]
 GUO Dawei,LI Jinghao,LU Jun.Multi-scale deep learning method for 3D point cloud registration[J].CAAI Transactions on Intelligent Systems,2024,19():817.[doi:10.11992/tis.202304007]

备注/Memo

收稿日期:2024-3-12。
基金项目:黑龙江省自然科学基金项目(F201123).
作者简介:陆军,教授,博士生导师,主要研究方向为计算机视觉、图像处理、高性能船舶控制。主持和承担国家及省部级科研项目多项,参与或承担的项目获国防科学技术进步奖一等奖3项、省部级二等奖1项、省部级三等奖3项,发表学术论文80余篇。E-mail: lujun0260@sina.com。;王文豪,硕士研究生,主要研究方向为三维机器视觉、图像处理。E-mail:wenhao-wang@qq.com。;杜宏劲,硕士研究生,主要研究方向为三维点云、图像处理、目标识别。E-mail:dhjmuchen@163.com。
通讯作者:陆军. E-mail:lujun0260@sina.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com