[1]殷泽众,郭茂祖,田乐.基于傅里叶频域截断的神经辐射场优化[J].智能系统学报,2024,19(5):1319-1330.[doi:10.11992/tis.202401036]
YIN Zezhong,GUO Maozu,TIAN Le.Neural radiance field optimization based on Fourier frequency domain truncation[J].CAAI Transactions on Intelligent Systems,2024,19(5):1319-1330.[doi:10.11992/tis.202401036]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第5期
页码:
1319-1330
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2024-09-05
- Title:
-
Neural radiance field optimization based on Fourier frequency domain truncation
- 作者:
-
殷泽众1,2, 郭茂祖1,2, 田乐1,2
-
1. 北京建筑大学 电气与信息工程学院, 北京 100044;
2. 北京建筑大学 建筑大数据智能处理方法研究北京重点实验室, 北京 100044
- Author(s):
-
YIN Zezhong1,2, GUO Maozu1,2, TIAN Le1,2
-
1. School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;
2. Research on Intelligent Processing Method of Building Big Data Beijing Key Laboratory, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
-
- 关键词:
-
神经辐射场; 频率截断; 傅里叶变换; 三维重建; 稀疏视角; 精细渲染; 位置编码; 场景表达
- Keywords:
-
neural radiance field; frequency domain truncation; Fourier transform; 3D reconstruction; sparse view; fine rendering; positional encoding; scene representation
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202401036
- 文献标志码:
-
2024-08-28
- 摘要:
-
神经辐射场(neural radiance fields, NeRF)作为一种通用的场景表达方法,可以更好地理解三维世界的同时创造出更加逼真的感官体验。然而在实际应用中,输入图像较少导致重建效果不佳是一个常见的问题。为此,本文提出了基于傅里叶频域截断的神经辐射场(sparse views neural radiance fields, Sv-NeRF),通过在频域空间对输入频率进行截断并应用正则化策略来控制高频信号的输入来优化NeRF的位置编码机制,有效地降低了高频噪声,保留了关键的细节信息以提升渲染的质量和稳定性。该方法提升了模型对场景的理解能力,相较于现有方法在渲染质量、细节保留能力上均有显著提升,尤其适用于稀疏输入视角的场景重建工作。
- Abstract:
-
Neural radiance field (NeRF), as a general method of scene expression, can better understand the three-dimensional (3D) world and create a more realistic sensory experience. However, in practical application, it is a common problem that less input images lead to poor reconstruction effect. Thus, a sparse-view neural radiance field (Sv-NeRF) is proposed in this study based on Fourier frequency domain truncation. The position coding mechanism of NeRF is optimized by truncating the input frequency in the frequency domain space and applying a regularization strategy to control the input of high-frequency signals. This method effectively reduces high-frequency noise and retains key details to improve the quality and stability of rendering. Compared with other methods, the proposed method improves the ability of the model to understand the scene significantly, and improves the rendering quality and detail preservation ability. It is especially suitable for scene reconstruction from the sparse input perspective.
备注/Memo
收稿日期:2024-1-29。
基金项目:国家自然科学基金面上项目(62271036);北京市自然科学基金面上项目(4232021).
作者简介:殷泽众,硕士研究生,主要研究方向为计算机视觉、智慧城市。E-mail:13717744389@163.com;郭茂祖,教授,博士生导师,博士,中国计算机学会杰出会员。主要研究方向为机器学习与人工智能、智能建造与智慧城市、生物信息学。发表学术论文 200余篇。E-mail:guomaozu@bucea.edu.cn;田乐,副教授,博士,主要研究方向为计算机网络、无线通信、大数据处理。获得2022年中国发明协会一等奖,授权发明专利3项,软件著作权2项,出版专著1部。E-mail:tianle@bucea.edu.cn。
通讯作者:郭茂祖. E-mail:guomaozu@bucea.edu.cn
更新日期/Last Update:
2024-09-05