[1]胡克,孙洪飞.未知混动态环境下多无人机轨迹规划[J].智能系统学报,2025,20(2):445-456.[doi:10.11992/tis.202401035]
 HU Ke,SUN Hongfei.Trajectory planning for multi-drone in unknow mixed dynamic environments[J].CAAI Transactions on Intelligent Systems,2025,20(2):445-456.[doi:10.11992/tis.202401035]
点击复制

未知混动态环境下多无人机轨迹规划

参考文献/References:
[1] PARK J, KIM J, JANG I, et al. Efficient multi-agent trajectory planning with feasibility guarantee using relative Bernstein polynomial[C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 434-440.
[2] MELLINGER D, KUSHLEYEV A, KUMAR V. Mixed-integer quadratic program trajectory generation for heterogeneous quadrotor teams[C]//2012 IEEE International Conference on Robotics and Automation. Saint Paul: IEEE, 2012: 477-483.
[3] H?NIG W, PREISS J A, SATISH KUMAR T K, et al. Trajectory planning for quadrotor swarms[J]. IEEE transactions on robotics, 2018, 34(4): 856-869.
[4] 李樾, 韩维, 陈清阳, 等. 基于改进的速度障碍法的有人/无人机协同系统三维实时避障方法[J]. 西北工业大学学报, 2020, 38(2): 309-318.
LI Yue, HAN Wei, CHEN Qingyang, et al. Real-time obstacle avoidance for manned/unmanned aircraft cooperative system based on improved velocity obstacle method[J]. Journal of northwestern polytechnical university, 2020, 38(2): 309-318.
[5] 张钟元, 戴炜, 李光昱, 等. 基于改进人工势场和一致性协议的协同避障算法[J]. 计算机应用, 2023, 43(8): 2644-2650.
ZHANG Zhongyuan, DAI Wei, LI Guangyu, et al. Cooperative obstacle avoidance algorithm based on improved artificial potential field and consensus protocol[J]. Journal of computer applications, 2023, 43(8): 2644-2650.
[6] 罗瑞宁, 黄树彩, 赵岩, 等. 子拦截弹拦截无人机集群防碰撞制导律[J]. 航空兵器, 2023, 30(1): 51-58.
LUO Ruining, HUANG Shucai, ZHAO Yan, et al. Collision avoidance guidance law for sub-interceptors intercepting UAV cluster[J]. Aero weaponry, 2023, 30(1): 51-58.
[7] TORDESILLAS J, HOW J P. MADER: trajectory planner in multiagent and dynamic environments[J]. IEEE transactions on robotics, 2022, 38(1): 463-476.
[8] FIORINI P, SHILLER Z. Motion planning in dynamic environments using velocity obstacles[J]. The international journal of robotics research, 1998, 17(7): 760-772.
[9] VAN DEN BERG J, GUY S J, LIN Ming, et al. Reciprocal n-body collision avoidance[M]//Robotics Research. Berlin: Springer Berlin Heidelberg, 2011: 3-19.
[10] ARUL S H, MANOCHA D. DCAD: decentralized collision avoidance with dynamics constraints for agile quadrotor swarms[J]. IEEE robotics and automation letters, 2020, 5(2): 1191-1198.
[11] ALONSO-MORA J, MONTIJANO E, SCHWAGER M, et al. Distributed multi-robot formation control among obstacles: a geometric and optimization approach with consensus[C]//2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 5356-5363.
[12] YU Zhang, YANG Jingzhao, CHEN Shaofei, et al. Decentralized cooperative trajectory planning for multiple UAVs in dynamic and uncertain environments[C]//2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems. Cairo: IEEE, 2015: 377-382.
[13] ZHOU Xin, WANG Zhepei, WEN Xiangyong, et al. Decentralized spatial-temporal trajectory planning for multicopter swarms[EB/OL]. (2021-06-23) [2024-01-23]. https://arxiv.org/abs/2106.12481v2.
[14] HOU Jialiang, ZHOU Xin, GAN Zhongxue, et al. Enhanced decentralized autonomous aerial robot teams with group planning[J]. IEEE robotics and automation letters, 2022, 7(4): 9240-9247.
[15] XU Gang, KANG Xiao, YANG Helei, et al. Distributed multi-vehicle task assignment and motion planning in dense environments[J]. IEEE transactions on automation science and engineering, 2024, 21(4): 7027-7039.
[16] LU Liangliang, DAI Jiyang, YING Jin. Distributed multi-UAV cooperation for path planning by an NTVPSO-ADE algorithm[C]//2022 41st Chinese Control Conference. Hefei: IEEE, 2022: 5973-5978.
[17] LIU Sikang, WATTERSON M, MOHTA K, et al. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments[J]. IEEE robotics and automation letters, 2017, 2(3): 1688-1695.
[18] CHEN Jing, LIU Tianbo, SHEN Shaojie. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments[C]//2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 1476-1483.
[19] 张浩杰, 张玉东, 梁荣敏, 等. 改进A* 算法的机器人能耗最优路径规划方法[J]. 系统工程与电子技术, 2023, 45(2): 513-520.
ZHANG Haojie, ZHANG Yudong, LIANG Rongmin, et al. Energy-efficient path planning method for robots based on improved A* algorithm[J]. Systems engineering and electronics, 2023, 45(2): 513-520.
[20] 徐彬, 孙恒飞, 唐寿星, 等. 基于改进运动原语生成的陆空两栖机器人Kinodynamic A*算法[J]. 北京理工大学学报, 2024, 44(2): 189-199.
XU Bin, SUN Hengfei, TANG Shouxing, et al. Kinodynamic A* algorithm of hybrid aerial-ground robot based on improved motion primitive generation[J]. Transactions of Beijing Institute of Technology, 2024, 44(2): 189-199.
[21] LIN Jiahui, ZHOU Tong, ZHU Delong, et al. Search-based online trajectory planning for car-like robots in highly dynamic environments[C]//2021 IEEE International Conference on Robotics and Automation. Xi’an: IEEE, 2021: 8151-8157.
[22] YAN Jingyu, MA Jianjun. Search-based trajectory planning with motion primitives for quadrotors using pruning A* algorithm[C]//2022 37th Youth Academic Annual Conference of Chinese Association of Automation. Beijing: IEEE, 2022: 996-1000.
[23] PEDROSA M V A, SCHNEIDER T, FLA?KAMP K. Graph-based motion planning with primitives in a continuous state space search[C]//2021 6th International Conference on Mechanical Engineering and Robotics Research. Krakow: IEEE, 2021: 30-39.
[24] ADABALA B, AJANOVI? Z. A multi-heuristic search-based motion planning for automated parking[C]//2023 XXIX International Conference on Information, Communication and Automation Technologies. Sarajevo: IEEE, 2023: 1-8.
[25] ZHOU Boyu, GAO Fei, WANG Luqi, et al. Robust and efficient quadrotor trajectory generation for fast autonomous flight[J]. IEEE robotics and automation letters, 2019, 4(4): 3529-3536.
[26] LIU Sikang, ATANASOV N, MOHTA K, et al. Search-based motion planning for quadrotors using linear quadratic minimum time control[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: ACM, 2017: 2872-2879.
[27] DING Wenchao, GAO Wenliang, WANG Kaixuan, et al. An efficient B-spline-based kinodynamic replanning framework for quadrotors[J]. IEEE transactions on robotics, 2019, 35(6): 1287-1306.
[28] LAU B, SPRUNK C, BURGARD W. Improved updating of Euclidean distance maps and Voronoi diagrams[C]//2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei: IEEE, 2010: 281-286.
[29] OLEYNIKOVA H, TAYLOR Z, FEHR M, et al. Voxblox: incremental 3D euclidean signed distance fields for on-board MAV planning[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 1366-1373.
[30] ZHOU Xin, WANG Zhepei, YE Hongkai, et al. EGO-planner: an ESDF-free gradient-based local planner for quadrotors[J]. IEEE robotics and automation letters, 2021, 6(2): 478-485.
[31] WANG Yingjian, JI Jialin, WANG Qianhao, et al. Autonomous flights in dynamic environments with onboard vision[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 1966-1973.
[32] MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 2520-2525.
[33] VERRIEST E I, LEWIS F L. On the linear quadratic minimum-time problem[J]. IEEE transactions on automatic control, 1991, 36(7): 859-863.
[34] GAO Fei, LIN Yi, SHEN Shaojie. Gradient-based online safe trajectory generation for quadrotor flight in complex environments[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver: IEEE, 2017: 3681-3688.
[35] OLEYNIKOVA H, BURRI M, TAYLOR Z, et al. Continuous-time trajectory optimization for online UAV replanning[C]//2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon: IEEE, 2016: 5332-5339.
[36] LIU Sikang, MOHTA Kartik, ATANASOV Nikolay, et al. Towards search-based motion planning for micro aerial vehicles[EB/OL]. (2018-10-07) [2024-01-23]. https://arxiv.org/pdf/1810.03071.pdf.
[37] WANG Zhepei, ZHOU Xin, XU Chao, et al. Geometrically constrained trajectory optimization for multicopters[J]. IEEE transactions on robotics, 2022, 38(5): 3259-3278.
[38] ZHOU Xin, WEN Xiangyong, WANG Zhepei, et al. Swarm of micro flying robots in the wild[J]. Science robotics, 2022, 7(66): eabm5954.

备注/Memo

收稿日期:2024-1-23。
基金项目:航空科学基金项目(20220058068001).
作者简介:胡克,硕士研究生,主要研究方向为多智能体轨迹规划。E-mail:hooke155@163.com;孙洪飞,教授,主要研究方向为无人飞行器智能控制系统设计与实现、高超声速飞行器运动控制。发表学术论文40余篇。 E-mail:sunhf@xmu.edu.cn。
通讯作者:孙洪飞. E-mail:sunhf@xmu.edu.cn

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com