[1]吴一全,庞雅轩.手机表面缺陷的机器视觉检测方法研究进展[J].智能系统学报,2025,20(1):33-51.[doi:10.11992/tis.202312036]
 WU Yiquan,PANG Yaxuan.Research progress of mobile phone surface defect detection based on machine vision[J].CAAI Transactions on Intelligent Systems,2025,20(1):33-51.[doi:10.11992/tis.202312036]
点击复制

手机表面缺陷的机器视觉检测方法研究进展

参考文献/References:
[1] 柴利, 任磊, 顾锞, 等. 基于视觉感知的表面缺陷智能检测理论及工业应用[J]. 计算机集成制造系统, 2022, 28(7): 1996-2004.
CHAI Li, REN Lei, GU Ke, et al. Vision sensing based intelligent detection of surface defect and its industrial applications[J]. Computer integrated manufacturing systems, 2022, 28(7): 1996-2004.
[2] 赵朗月, 吴一全. 基于机器视觉的表面缺陷检测方法研究进展[J]. 仪器仪表学报, 2022, 43(1): 198-219
ZHAO Langyue, WU Yiquan. Research progress of surface defect detection methods based on machine vision[J]. Chinese journal of scientific instrument, 2022, 43(1): 198-219.
[3] 苏虎, 张家斌, 张博豪, 等. 基于视觉感知的表面缺陷检测综述[J]. 计算机集成制造系统, 2023, 29(1): 169-191.
SU Hu, ZHANG Jiabin, ZHANG Bohao, et al. Review of surface defect inspection based on visual perception[J]. Computer integrated manufacturing systems, 2023, 29(1): 169-191.
[4] MING Wuyi, CAO Chen, ZHANG Guojun, et al. Review: application of convolutional neural network in defect detection of 3C products[J]. IEEE access, 2002, 9: 135657-135674.
[5] MING Wuyi, SHEN Fan, LI Xiaoke, et al. A comprehensive review of defect detection in 3C glass components[J]. Measurement, 2020, 158: 107722.
[6] 明五一, 贾豪杰, 何文斌, 等. 透明件表面缺陷的机器视觉检测综述[J]. 机械科学与技术, 2021, 40(1): 116-124.
MING Wuyi, JIA Haojie, HE Wenbin, et al. Detecting surface defects of transparent parts with computer vision[J]. Mechanical science and technology for aerospace engineering, 2021, 40(1): 116-124.
[7] 李焕焕, 代显智, 黎涛, 等. 基于机器视觉的手机屏幕缺陷检测中的研究进展[J]. 电子制作, 2023, 31(20): 101-106.
LI Huanhuan, DAI Xianzhi, LI Tao, et al. Research progress of mobile phone screen defect detection based on machine vision[J]. Practical electronics, 2023, 31(20): 101-106.
[8] 李常胜. 手机玻璃盖板视觉缺陷检测方法与实验研究[D]. 广州: 华南理工大学, 2021.
LI Changsheng. Detection method and experimental study on visual defects of mobile phone glass cover plate[D]. Guangzhou: South China University of Technology, 2021.
[9] 东莞沃德普. 沃德普手机玻璃盖板缺陷检测案例[EB/OL]. (2015-09-07)[2023-04-19]. http://www.wordop.cn/Article/shoujiboligaibanquex_1.html.
DONGGUAN WORDOP. Wordop mobile phone glass cover defect detection case[EB/OL]. (2015-09-07)[2023-04-19]. http://www.wordop.cn/Article/shoujiboligaibanquex_1.html.
[10] 盈泰德. 曲面屏表面瑕疵检测, 曲面屏外观缺陷视觉检测系统–机器视觉_视觉检测设备_3D视觉_缺陷检测[EB/OL]. (2015-09-07)[2021-04-20]. https://www.0755vc.com/7586.html.
INTSOFT. Curved screen surface defect detection, curved screen appearance defect visual inspection system-machine vision_visual inspection equipment_3D vision_defect detection [EB/OL]. (2015-09-07) [2021-04-20]. https://www.0755vc.com/7586.html.
[11] 姜梦梅. 基于图像处理的纹理表面缺陷检测算法研究[D]. 成都: 电子科技大学, 2018.
JIANG Mengmei. Research on texture surface defect detection algorithm based on image processing[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[12] PAN Jiawei, ZENG Deyu, TAN Qi, et al. EU-net: a novel semantic segmentation architecture for surface defect detection of mobile phone screens[C]//2021 China Automation Congress. Beijing: IEEE, 2021: 6589-6594.
[13] 北京市林阳智能技术研究中心. 表面缺陷检测系统, 表面视觉检测、表面检测[EB/OL]. (2021-01-18)[2023-06-26]. http://www.ly-image.com/hy-news/618.html.
Beijing Linyang Intelligence Technology Research Center. Surface defect detection system, surface visual inspection, surface inspection[EB/OL]. (2021-01-18)[2023-06-26]. http://www.ly-image.com/hy-news/618.html.
[14] 中国工控网. 手机玻璃盖板油墨丝印透光检测_缺陷检测[EB/OL]. (2018-12-22)[2023-06-26]. http://www.gongkong.com/article/201812/www.gongkong.com/article/201812/84083.html.
China Gongkong. Mobile phone glass cover ink screen printing light transmission detection_defect detection[EB/OL]. (2018-12-22)[2023-06-26]. http://www.gongkong.com/article/201812/www.gongkong.com/article/201812/84083.html.
[15] 飞耐尔. 玻璃盖板后壳使用平板清洗机常见的问题及解决方案[EB/OL]. (2017-02-28)[2023-06-26]. http://www.flierch.com/news/36.html.
FLIER. Common problems and solutions of glass cover back shell using flat washers[EB/OL]. (2017-02-28)[2023-06-26]. http://www.flierch.com/news/36.html.
[16] 张钟磊. 基于计算机视觉的手机屏幕缺陷检测方法研究[D]. 长春: 吉林大学, 2022.
ZHANG Zhonglei. Research on defect detection method of mobile phone screen based on computer vision[D]. Changchun: Jilin University, 2022.
[17] 夏诗娴. 电子制造生产线中的手机外壳缺陷视觉检测方法研究[D]. 长沙: 湖南大学, 2019.
XIA Shixian. Research on visual inspection method of mobile phone shell defects in electronic manufacturing production line[D]. Changsha: Hunan University, 2019.
[18] 张伟, 曾碧. 针对复杂纹理的手机外壳缺陷检测方法[J]. 计算机应用与软件, 2017, 34(11): 217-222
ZHANG Wei, ZENG Bi. A defect detection method for complex texture on mobile phone shell[J]. Computer applications and software, 2017, 34(11): 217-222.
[19] JIAN Chuanxia, GAO Jian, AO Yinhui. Automatic surface defect detection for mobile phone screen glass based on machine vision[J]. Applied soft computing, 2017, 52: 348-358.
[20] 李伟朝, 陈志豪, 张勰, 等. 基于PU-Faster R-CNN的手机屏幕缺陷检测算法研究[J]. 计算机测量与控制, 2023: 1-18.
LI Weichao, CHEN Zhihao, ZHANG Xie, et al. PU-Faster R-CNN based defect detection model for mobile phone screen[J]. Computer measurement & control, 2023: 1-18.
[21] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[22] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241.
[23] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[24] 彭大芹, 刘恒, 许国良. 使用候选框进行全卷积网络修正的目标分割算法[J]. 重庆邮电大学学报(自然科学版), 2021, 33(1): 135-143.
PENG Daqin, LIU Heng, XU Guoliang. Object segmentation algorithm modified by candidate box for fully convolution network[J]. Journal of Chongqing University of Posts and Telecommunications (natural science edition), 2021, 33(1): 135-143.
[25] 李智勇. 基于深度学习的手机屏幕缺陷检测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LI Zhiyong. Research on mobile phone screen defect detection technology based on deep learning[D]. Harbin: Harbin Institute of Technology, 2020.
[26] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2023-06-26]. https://arxiv.org/abs/1804.02767v1.
[27] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2023-06-26]. https://arxiv.org/abs/2004.10934v1.
[28] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 21-37.
[29] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. (2017-06-17)[2023-06-26]. https://arxiv.org/abs/1706.05587v3.
[30] TORNG J S, MAUNG K, FAN K C. Development of an automated optical inspection system for mobile phone panels[J]. Journal of the Chinese society of mechanical engineers, transactions of the Chinese institute of engineers-Series C, 2013, 34: 103-108.
[31] JIAN Chuanxia, GAO Jian, AO Yinhui. Imbalanced defect classification for mobile phone screen glass using multifractal features and a new sampling method[J]. Multimedia tools and applications, 2017, 76(22): 24413-24434.
[32] JIANG Jiabin, XIAO Xiang, FENG Guohua, et al. Detection and classification of glass defects based on machine vision[C]//Applied Optical Metrology III. San Diego: SPIE, 2019: 244-249.
[33] HUANG Huaxi, HU Chao, WANG Tian, et al. Surface defects detection for mobilephone panel workpieces based on machine vision and machine learning[C]//2017 IEEE International Conference on Information and Automation. Macao: IEEE, 2017: 370-375.
[34] 王松芳. 基于特征分类的低分辨率触摸屏表面缺陷检测[D]. 北京: 北京交通大学, 2016.
WANG Songfang. Surface defect detection of low-resolution touch screen based on feature classification[D]. Beijing: Beijing Jiaotong University, 2016.
[35] 张刘赟. 基于机器视觉的手机金属板表面缺陷检测技术研究[D]. 杭州: 浙江大学, 2018.
ZHANG Liuyun. Research on surface defect detection technology of mobile phone metal plate based on machine vision[D]. Hangzhou: Zhejiang University, 2018.
[36] LI Di, LIANG Liequan, ZHANG Wujie. Defect inspection and extraction of the mobile phone cover glass based on the principal components analysis[J]. The international journal of advanced manufacturing technology, 2014, 73(9): 1605-1614.
[37] 汪豪. 基于机器视觉的手机外壳表面缺陷检测系统研究[D]. 长沙: 湖南大学, 2021.
WANG Hao. Research on surface defect detection system of mobile phone shell based on machine vision[D]. Changsha: Hunan University, 2021.
[38] 孙文政. 基于深度学习和机器视觉的手机屏幕瑕疵检测方法研究[D]. 济南: 山东大学, 2019.
SUN Wenzheng. Research on mobile phone screen defect detection method based on deep learning and machine vision[D]. Jinan: Shandong University, 2019.
[39] BHUTTA M U M, ASLAM S, YUN Peng, et al. Smart-inspect: micro scale localization and classification of smartphone glass defects for industrial automation[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 2860-2865.
[40] WEI Xiangying, FENG Wei, LEI Qujiang, et al. Defect detection of using variant CNN in the processing of cover glass, touch screen and display under parallel light[C]//2020 IEEE 6th International Conference on Computer and Communications. Chengdu: IEEE, 2020: 1349-1355.
[41] CHEN Zhihao, ZHA Yunwei, WU Zongze, et al. Detection of mobile phone screen defect based on faster R-CNN fusion model[C]//2021 China Automation Congress. Beijing: IEEE, 2021: 6601-6606.
[42] 任金梅, 仲志丹, 李跃松, 等. 基于SCNN-ELM模型的手机外壳缺陷检测方法研究[J]. 制造业自动化, 2021, 43(5): 22-27.
REN Jinmei, ZHONG Zhidan, LI Yuesong, et al. Research on defect detection method of mobile phone shell based on SCNN-ELM model[J]. Manufacturing automation, 2021, 43(5): 22-27.
[43] 韩红桂, 甄晓玲, 李方昱, 等. 基于多尺度卷积神经网络的手机表面缺陷识别方法[J]. 北京工业大学学报, 2023, 49(11): 1163-1171.
HAN Honggui, ZHEN Xiaoling, LI Fangyu, et al. Mobile phone model recognition method based on Siamese convolutional neural network[J]. Journal of Beijing University of Technology, 2023, 49(11): 1163-1171.
[44] 李墨, 陈志豪, 张勰. 基于U-P-Net的手机玻璃屏幕缺陷分割[J]. 计算机测量与控制, 2023, 31(8): 231-237.
LI Mo, CHEN Zhihao, ZHANG Xie. Defect segmentation of mobile phone screen based on U-P-net[J]. Computer measurement & control, 2023, 31(8): 231-237.
[45] WANG Tao, ZHANG Can, DING Runwei, et al. Mobile phone surface defect detection based on improved faster R-CNN[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 9371-9377.
[46] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[47] SONG Haotian, TAO Hong, HE Zhiqiang, et al. Micro-defect detection based on multi-scale feature backtracking structure[C]//2022 7th International Conference on Cloud Computing and Big Data Analytic. Chengdu: IEEE, 2022: 483-489.
[48] GUO Tianyu, ZHANG Linlin, DING Runwei, et al. EDD-net: an efficient defect detection network[C]//2020 25th International Conference on Pattern Recognition. Milan: IEEE, 2021: 8899-8905.
[49] LI Yue, LI Junfeng. An end-to-end defect detection method for mobile phone light guide plate via multitask learning[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 2505513.
[50] 吴闯, 于大泳. 基于深度卷积神经网络的手机玻璃盖板表面缺陷分类检测研究[J]. 软件工程, 2021, 24(12): 6-10.
WU Chuang, YU Dayong. Research on classified detection of surface defects of mobile phone glass cover based on deep convolutional neural network[J]. Software engineering, 2021, 24(12): 6-10.
[51] ZHU Ying, DING Runwei, HUANG Weibo, et al. HMFCA-Net: Hierarchical multi-frequency based Channel attention net for mobile phone surface defect detection[J]. Pattern recognition letters, 2022, 153: 118-125.
[52] PARK J, RIAZ H, KIM H, et al. Advanced cover glass defect detection and classification based on multi-DNN model[J]. Manufacturing letters, 2020, 23: 53-61.
[53] 干宝明. 面向手机回收的表面缺陷检测与残值评估技术研究[D]. 杭州: 浙江大学, 2022.
GAN Baoming. Research on surface defect detection and residual value evaluation technologies for mobile phone recycling. Hangzhou: Zhejiang University, 2022.
[54] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 3-19.
[55] MAO Jiao, XU Guoliang, HE Lijun, et al. Attention-relation network for mobile phone screen defect classification via a few samples[J]. Digital communications and networks, 2024, 10(4): 1113-1120.
[56] 许国良, 毛骄. 基于协同注意力的小样本的手机屏幕缺陷分割[J]. 电子与信息学报, 2022, 44(4): 1476-1483.
XU Guoliang, MAO Jiao. Few-shot segmentation on mobile phone screen defect based on co-attention[J]. Journal of electronics & information technology, 2022, 44(4): 1476-1483.
[57] SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: relation network for few-shot learning[EB/OL]. (2017-11-16)[2023-12-22]. https://arxiv.org/abs/1711.06025v2.
[58] HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[EB/OL]. (2016-08-25)[2023-12-22]. https://arxiv.org/abs/1608.06993v5.
[59] 陶文才. 手机壳表面缺陷视觉检测系统设计[D]. 沈阳: 沈阳工业大学, 2018.
TAO Wencai. Design of visual inspection system for mobile shell surface defects[D]. Shenyang: Shenyang University of Technology, 2018.
[60] WANG Lei, LUO Lilan, ZHENG Peng, et al. A fast dent detection method for curved glass using deep convolutional neural network[C]//2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification. Xia’men: IEEE, 2019: 117-121.
[61] 萧显. 基于机器视觉的手机屏幕玻璃缺陷检测方法研究[D]. 广州: 广东工业大学, 2019.
XIAO Xian. Research on detection method of cellphone screen glass defect based on machine vision[D]. Guangzhou: Guangdong University of Technology, 2019.
[62] 罗根, 倪军. 基于机器视觉的手机屏幕玻璃尺寸检测及崩边评价[J]. 电子测量与仪器学报, 2018, 32(2): 92-96.
LUO Gen, NI Jun. Glass size measurement and edge collapse assessment of mobile phone screens based on machine vision[J]. Journal of electronic measurement and instrumentation, 2018, 32(2): 92-96.
[63] 陈晓红. 基于机器视觉的触摸屏玻璃缺陷检测方法研究[D]. 广州: 华南理工大学, 2013.
CHEN Xiaohong. Research on touchscreen glass defects detection methods based on computer vision[D]. Guangzhou: South China University of Technology, 2013.
[64] LUO Zhao, XIAO Xiaobing, GE Shiming, et al. ScratchNet: detecting the scratches on cellphone screen[M]//Communications in Computer and Information Science. Singapore: Springer Singapore, 2017: 178-186.
[65] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[66] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2023-12-22]. https://arxiv.org/abs/1409.1556v6.
[67] YANG Weilin, ZHANG Yongwei, DONG Yue, et al. Development of machine vision system for off-line inspection of fine defects on glass screen surface[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 5016008.
[68] 任秉银, 李智勇, 代勇. 手机屏幕轻微划痕检测方法[J]. 哈尔滨工业大学学报, 2021, 53(1): 29-36.
REN Bingyin, LI Zhiyong, DAI Yong. Method for detection of slight scratch of mobile phone screen[J]. Journal of Harbin Institute of Technology, 2021, 53(1): 29-36.
[69] BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5-32.
[70] LYU Yongfa, MA Ling, JIANG Huiqin. A mobile phone screen cover glass defect detection MODEL based on small samples learning[C]//2019 IEEE 4th International Conference on Signal and Image Processing. Wuxi: IEEE, 2019: 1055-1059.
[71] MA Ling, LU Yue, NAN Xiao fei, et al. Defect detection of mobile phone surface based on convolution neural network[J]. DEStech transactions on computer science and engineering, 2018: 111-119.
[72] CHEN Hailang. CNN-based surface defect detection of smartphone protective screen[J]. Journal of physics: conference series, 2020, 1616(1): 012101.
[73] SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 1-9.
[74] 张鸿鹏. 智能手机表面缺陷检测系统的设计与实现[D]. 郑州: 郑州大学, 2021.
ZHANG Hongpeng. Design and implementation of surface defect detection system for smart phone[D]. Zhengzhou: Zhengzhou University, 2021.
[75] 郝强. 基于深度学习的手机玻璃盖板缺陷检测研究[D]. 广州: 华南理工大学, 2021.
HAO Qiang. Mobile phone glass cover defect detection based on deep learning[D]. Guangzhou: South China University of Technology, 2021.
[76] 张跃, 陈宁, 孔明, 等. 基于改进YOLOv4网络的手机曲面玻璃缺陷检测[J]. 现代电子技术, 2023, 46(23): 103-108.
ZHANG Yue, CHEN Ning, KONG Ming, et al. Mobile phone curved glass defect detection based on improved YOLOv4 network[J]. Modern electronics technique, 2023, 46(23): 103-108.
[77] 崔杰, 杨凯. 基于改进DenseNet网络的手机屏幕缺陷检测研究[J]. 中国计量大学学报, 2023, 34(2): 208-215.
CUI Jie, YANG Kai. Research on mobile phone screen defect detection based on the improved DenseNet network[J]. Journal of China University of Metrology, 2023, 34(2): 208-215.
[78] 伍济钢, 成远, 邵俊, 等. 面向智能手机玻璃盖板缺陷检测的YOLOv3改进和应用[J]. 液晶与显示, 2021, 36(12): 1728-1736.
WU Jigang, CHENG Yuan, SHAO Jun, et al. Improvement and application of YOLOv3 for defect detection of smart phone glass covers[J]. Chinese journal of liquid crystals and displays, 2021, 36(12): 1728-1736.
[79] SANDLER M, HOWARD A, ZHU Menglong, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4510-4520.
[80] LEI Jie, GAO Xin, FENG Zunlei, et al. Scale insensitive and focus driven mobile screen defect detection in industry[J]. Neurocomputing, 2018, 294: 72-81.
[81] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[EB/OL]. (2015-11-02)[2023-12-22]. https://arxiv.org/abs/1511.00561.
[82] 崔焱, 彭可, 杨玉娥, 等. 基于机器视觉的手机盖板表面缺陷检测系统设计[J]. 制造业自动化, 2023, 45(7): 75-79, 96.
CUI Yan, PENG Ke, YANG Yu’e, et al. Design of the surface defect detection system for mobile phone cover based on machine vision[J]. Manufacturing automation, 2023, 45(7): 75-79, 96.
[83] 尹东富, 杜明臣, 胡天昊, 等. 遮挡与缺失场景下屏幕缺陷视觉检测[J]. 深圳大学学报(理工版), 2023, 40(6): 631-639.
YIN Dongfu, DU Mingchen, HU Tianhao, et al. Visual detection of screen defects in occlusion and missing scenes[J]. Journal of Shenzhen University (science and engineering edition), 2023, 40(6): 631-639.
[84] 文生平, 洪华锋, 舒凯翔. 精密注塑手机外壳表面缺陷视觉检测系统设计[J]. 塑料工业, 2017, 45(9): 53-56.
WEN Shengping, HONG Huafeng, SHU Kaixiang. Design of vision inspection system for surface defect detection of precision injection cellphone cases[J]. China plastics industry, 2017, 45(9): 53-56.
[85] WANG Changshu, LI Changsheng, HUANG Yanjiang, et al. Surface defect inspection and classification for glass screen of mobile phone[C]//Tenth International Conference on Graphics and Image Processing. Chengdu: SPIE, 2019, 11069: 527-536.
[86] 彭赶, 张平, 潘奕创. 基于机器视觉的手机屏幕缺陷检测系统研究[J]. 自动化技术与应用, 2018, 37(9): 104-107, 127.
PENG Gan, ZHANG Ping, PAN Yichuang. Research on mobile phone screen defect detection system based on machine vision[J]. Techniques of automation and applications, 2018, 37(9): 104-107, 127.
[87] 张斌, 曾碧, 林伟. 光照不均环境下的手机外壳缺陷检测研究[J]. 机电工程技术, 2019, 48(9): 40-42, 77.
ZHANG Bin, ZENG Bi, LIN Wei. Research on defect detection of mobile phone casing under uneven illumination[J]. Mechanical & electrical engineering technology, 2019, 48(9): 40-42, 77.
[88] 邝泳聪, 张坤, 谢宏威. 数码产品外壳表面的适应性智能检测技术[J]. 华南理工大学学报(自然科学版), 2015, 43(1): 1-8.
KUANG Yongcong, ZHANG Kun, XIE Hongwei. Adaptive intelligent detection technology for digital products’ shell surface[J]. Journal of South China University of Technology (natural science edition), 2015, 43(1): 1-8.
[89] 李娟慧. 手机表面缺陷的高精度机器视觉检测方法研究[D]. 长沙: 湖南大学, 2020.
LI Juanhui. Research on high-precision machine vision inspection method of mobile phone surface defects[D]. Changsha: Hunan University, 2020.
[90] 朱倩杰. 基于机器视觉的金属手机外壳表面缺陷检测算法研究[D]. 长沙: 湖南大学, 2020.
ZHU Qianjie. Research on the defect detection method of metal mobile phone backplane based on machine vision[D]. Changsha: Hunan University, 2020.
[91] 简川霞, 高健. 手机玻璃屏表面缺陷视觉检测方法研究[J]. 包装工程, 2018, 39(5): 16-21.
JIAN Chuanxia, GAO Jian. Visual detection method for surface defect of mobile phone screen glass[J]. Packaging engineering, 2018, 39(5): 16-21.
[92] 钱基德, 陈斌, 钱基业, 等. 基于机器视觉的液晶屏Mura缺陷检测方法[J]. 计算机科学, 2018, 45(6): 296-300, 313.
QIAN Jide, CHEN Bin, QIAN Jiye, et al. Machine vision based inspection method of Mura defect for LCD[J]. Computer science, 2018, 45(6): 296-300, 313.
[93] 刘磊. 基于机器视觉的金属手机背板缺陷检测识别方法研究[D]. 长沙: 湖南大学, 2019.
LIU Lei. Research on the defect detection and recognition method of metal mobile phone backplane based on machine vision[D]. Changsha: Hunan University, 2019.
[94] PARK Y, KWEON I S. Ambiguous surface defect image classification of AMOLED displays in smartphones[J]. IEEE transactions on industrial informatics, 2016, 12(2): 597-607.
[95] 王松芳, 岑翼刚. 基于Gabor特征稀疏表示分类的触摸屏缺陷检测[J]. 中国科技论文在线, 2015.
WANG Songfang, CEN Yigang. Gabor feature-based touch screen defects detection using 20 sparse representation classification[J]. Sciencepaper online, 2015.
[96] JIANG Jiabin, CAO Pin, LU Zichen, et al. Surface defect detection for mobile phone back glass based on symmetric convolutional neural network deep learning[J]. Applied sciences, 2020, 10(10): 3621.
[97] ZHANG Jian, DING Runwei, BAN Miaoju, et al. FDSNeT: an accurate real-time surface defect segmentation network[C]//ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Singapore: IEEE, 2022: 3803-3807.
[98] 沈红佳. 基于深度模型的手机屏幕缺陷检测和分类算法研究[D]. 杭州: 浙江大学, 2018.
SHEN Hongjia. Deep model based phone screen detection and classification[D]. Hangzhou: Zhejiang University, 2018.
[99] LI Changsheng, ZHANG Xianmin, HUANG Yanjiang, et al. A novel algorithm for defect extraction and classification of mobile phone screen based on machine vision[J]. Computers & industrial engineering, 2020, 146: 106530.
[100] ?ZTüRK ?, AKDEM?R B. Novel BiasFeed cellular neural network model for glass defect inspection[C]//2016 International Conference on Control, Decision and Information Technologies. Saint Julian’s: IEEE, 2016: 366-371.
[101] 孔国梁. 手机屏幕缺陷检测系统的设计与实现[D]. 哈尔滨: 黑龙江大学, 2020.
KONG Guoliang. Design and implementation of mobile phone screen defect detection system[D]. Harbin: Helongjiang University, 2020.
[102] 庄蕊. 基于机器视觉的手机表面缺陷检测方法研究[D]. 沈阳: 沈阳建筑大学, 2021.
ZHUANG Rui. Research on mobile phone surface defect detection method based on machine vision[D]. Shenyang: Shenyang Jianzhu University, 2021.
[103] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Los Angeles: NeurlPS, 2017.
[104] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09)[2023-12-22]. https://arxiv.org/abs/1503.02531v1.
相似文献/References:
[1]田国会,吉艳青,李晓磊.家庭智能空间下基于场景的人的行为理解[J].智能系统学报,2010,5(1):57.
 TIAN Guo-hui,JI Yan-qing,LI Xiao-lei.Human behaviors understanding based on scene knowledge in home intelligent space[J].CAAI Transactions on Intelligent Systems,2010,5():57.
[2]吴家伟,严京旗,方志宏,等.基于图像显著性特征的铸坯表面缺陷检测[J].智能系统学报,2012,7(1):75.
 WU Jiawei,YAN Jingqi,FANG Zhihong,et al.Defect detection on a steel slab surface based on the characteristics of an image’s saliency region[J].CAAI Transactions on Intelligent Systems,2012,7():75.
[3]梁义辉,战强.一种面向无线图像传输的视觉平台[J].智能系统学报,2016,11(5):608.[doi:10.11992/tis.201512014]
 LIANG Yihui,ZHAN Qiang.A visual platform for wireless image transmission[J].CAAI Transactions on Intelligent Systems,2016,11():608.[doi:10.11992/tis.201512014]
[4]李霞丽,吴立成,樊艳明.易于硬件实现的压缩感知观测矩阵的研究与构造[J].智能系统学报,2017,12(3):279.[doi:10.11992/tis.201606037]
 LI Xiali,WU Licheng,FAN Yanming.Study and construction of a compressed sensing measurement matrix that is easy to implement in hardware[J].CAAI Transactions on Intelligent Systems,2017,12():279.[doi:10.11992/tis.201606037]
[5]郭晓峰,王耀南,周显恩,等.中国象棋机器人棋子定位与识别方法[J].智能系统学报,2018,13(4):517.[doi:10.11992/tis.201709020]
 GUO Xiaofeng,WANG Yaonan,ZHOU Xianen,et al.Chess-piece localization and recognition method for Chinese chess robot[J].CAAI Transactions on Intelligent Systems,2018,13():517.[doi:10.11992/tis.201709020]
[6]安果维,王耀南,周显恩,等.基于显著性检测的双目测距系统[J].智能系统学报,2018,13(6):913.[doi:10.11992/tis.201712005]
 AN Guowei,WANG Yaonan,ZHOU Xianen,et al.Binocular distance measurement system based on saliency detection[J].CAAI Transactions on Intelligent Systems,2018,13():913.[doi:10.11992/tis.201712005]
[7]逄增治,郑修楠,李金屏.全钢子午线轮胎X光图像的缺陷检测研究现状[J].智能系统学报,2019,14(4):793.[doi:10.11992/tis.201806014]
 PANG Zengzhi,ZHENG Xiunan,LI Jinping.Research status of defect detection in X-ray images of all-steel radial tires[J].CAAI Transactions on Intelligent Systems,2019,14():793.[doi:10.11992/tis.201806014]
[8]张智,毕晓君.基于风格转换的无监督聚类行人重识别[J].智能系统学报,2021,16(1):48.[doi:10.11992/tis.202012014]
 ZHANG Zhi,BI Xiaojun.Clustering approach based on style transfer for unsupervised person re-identification[J].CAAI Transactions on Intelligent Systems,2021,16():48.[doi:10.11992/tis.202012014]
[9]赵立明,龙大周,徐晓东,等.工业机器人加工轨迹双目3D激光扫描成像修正方法[J].智能系统学报,2021,16(4):690.[doi:10.11992/tis.202008008]
 ZHAO Liming,LONG Dazhou,XU Xiaodong,et al.Binocular 3D laser scanning imaging-based industrial robot machining trajectory correction method[J].CAAI Transactions on Intelligent Systems,2021,16():690.[doi:10.11992/tis.202008008]
[10]朱齐丹,李小铜,郑天昊.舰载机位姿实时视觉测量算法研究[J].智能系统学报,2021,16(6):1045.[doi:10.11992/tis.202103014]
 ZHU Qidan,LI Xiaotong,ZHENG Tianhao.Research on real-time vision measurement algorithm of shipborne aircraft pose[J].CAAI Transactions on Intelligent Systems,2021,16():1045.[doi:10.11992/tis.202103014]

备注/Memo

收稿日期:2023-12-22。
基金项目:国家自然科学基金项目(61573183).
作者简介:吴一全,教授,主要研究方向为视觉检测与图像测量、视频处理与智能分析。主持国家自然科学基金等项目48项。发表学术论文350余篇。E-mail:nuaaimage@163.com。;庞雅轩,硕士研究生,主要研究方向为计算机视觉、图像处理。E-mail:hins_pang@nuaa.edu.cn。
通讯作者:吴一全. E-mail:nuaaimage@163.com

更新日期/Last Update: 2025-01-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com