[1]张瑞航,林森.基于多色域特征与物理模型的水下图像增强[J].智能系统学报,2025,20(2):475-485.[doi:10.11992/tis.202312004]
 ZHANG Ruihang,LIN Sen.Underwater image enhancement based on multicolor space features and physical models[J].CAAI Transactions on Intelligent Systems,2025,20(2):475-485.[doi:10.11992/tis.202312004]
点击复制

基于多色域特征与物理模型的水下图像增强

参考文献/References:
[1] 马建民, 李晓东, 高天羽, 等. 基于光视觉技术的海底管道自主巡检系统研究[J]. 计算机测量与控制, 2022, 30(6): 32-37,58.
MA Jianmin, LI Xiaodong, GAO Tianyu, et al. Research on autonomous inspection system of submarine pipeline based on optical vision technology[J]. Computer measurement & control, 2022, 30(6): 32-37,58.
[2] 杜艳玲, 王丽丽, 黄冬梅, 等. 融合密集特征金字塔的改进R2CNN海洋涡旋自动检测[J]. 智能系统学报, 2023, 18(2): 341-351.
DU Yanling, WANG Lili, HUANG Dongmei, et al. Improved R2CNN ocean eddy automatic detection with a dense feature pyramid[J]. CAAI transactions on intelligent systems, 2023, 18(2): 341-351.
[3] 严浙平, 曲思瑜, 邢文. 水下图像增强方法研究综述[J]. 智能系统学报, 2022, 17(5): 860-873.
YAN Zheping, QU Siyu, XING Wen. An overview of underwater image enhancement methods[J]. CAAI transactions on intelligent systems, 2022, 17(5): 860-873.
[4] 雷小燕, 张卫东, 潘细朋. 基于直方图分布特性的水下图像颜色校正方法[J]. 计算机工程与设计, 2022, 43(8): 2284-2293.
LEI Xiaoyan, ZHANG Weidong, PAN Xipeng. Underwater image color correction method based on histogram distribution characteristics[J]. Computer engineering and design, 2022, 43(8): 2284-2293.
[5] 张云涛, 刘惠萍, 黄益铭, 等. 基于图像分割和色适应变换白平衡的水下图像增强[J]. 激光与光电子学进展, 2023, 60(14): 37-43.
ZHANG Yuntao, LIU Huiping, HUANG Yiming, et al. Underwater image enhancement based on image segmentation and color adaptation transformation for white balance[J]. Laser & optoelectronics progress, 2023, 60(14): 37-43.
[6] 林森, 迟凯晨, 唐延东. 基于复原结构与增强纹理融合的水下图像清晰化[J]. 控制与决策, 2022, 37(3): 635-644.
LIN Sen, CHI Kaichen, TANG Yandong. Underwater image sharpening based on fusion of restored structure and enhanced texture[J]. Control and decision, 2022, 37(3): 635-644.
[7] JAFFE J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE journal of oceanic engineering, 1990, 15(2): 101-111.
[8] GALDRAN A, PARDO D, PICóN A, et al. Automatic red-channel underwater image restoration[J]. Journal of visual communication and image representation, 2015, 26: 132-145.
[9] DREWS P L J, NASCIMENTO E R, BOTELHO S S C, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE computer graphics and applications, 2016, 36(2): 24-35.
[10] PENG Y T, CAO Keming, COSMAN P C. Generalization of the dark channel prior for single image restoration[J]. IEEE transactions on image processing, 2018, 27(6): 2856-2868.
[11] LI Jie, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE robotics and automation letters, 2018, 3(1): 387-394.
[12] ZHU Junyan, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242-2251.
[13] FABBRI C, ISLAM M J, SATTAR J. Enhancing underwater imagery using generative adversarial networks[C]//2018 IEEE International Conference on Robotics and Automation. Brisbane: IEEE, 2018: 7159-7165.
[14] GUO Yecai, LI Hanyu, ZHUANG Peixian. Underwater image enhancement using a multiscale dense generative adversarial network[J]. IEEE journal of oceanic engineering, 2020, 45(3): 862-870.
[15] NAIK A, SWARNAKAR A, MITTAL K. Shallow-UWnet: compressed model for underwater image enhancement (student abstract)[C]//Proceedings of the AAAI conference on artificial intelligence. Virtual: AAAI, 2021: 15853-15854.
[16] LYU Zhangkai, PENG A, WANG Qingwei, et al. An efficient learning-based method for underwater image enhancement[J]. Displays, 2022, 74: 102174.
[17] LI Chongyi, ANWAR S, HOU Junhui, et al. Underwater image enhancement via medium transmission-guided multi-color space embedding[J]. IEEE transactions on image processing, 2021, 30: 4985-5000.
[18] ISLAM M J, XIA Youya, SATTAR J. Fast underwater image enhancement for improved visual perception[J]. IEEE robotics and automation letters, 2020, 5(2): 3227-3234.
[19] SHEN Zhen, XU Haiyong, LUO Ting, et al. UDAformer: underwater image enhancement based on dual attention transformer[J]. Computers & graphics, 2023, 111: 77-88.
[20] PLEISS G, CHEN Danlu, HUANG Gao, et al. Memory-efficient implementation of DenseNets[EB/OL]. (2017-07-21)[2023-12-04]. https://arxiv.org/abs/1707.06990.
[21] MA Xiaoming, CHEN Zhehan, FENG Zhipeng. Underwater image restoration through a combination of improved dark channel prior and gray world algorithms[J]. Journal of electronic imaging, 2019, 28: 053033.
[22] SHI Zhenghao, FENG Yaning, ZHAO Minghua, et al. Normalised gamma transformation-based contrast-limited adaptive histogram equalisation with colour correction for sand-dust image enhancement[J]. IET image processing, 2020, 14(4): 747-756.
[23] CHEN Yuwei, PEI S C. Domain adaptation for underwater image enhancement via content and style separation[J]. IEEE access, 2022, 10: 90523-90534.
[24] ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE transactions on image processing, 2018, 27(1): 379-393.
[25] LI Chongyi, GUO Chunle, REN Wenqi, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE transactions on image processing, 2019, 29: 4376-4389.
[26] JAHIDUL ISLAM M, LUO Peigen, SATTAR J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception[EB/OL]. (2020-02-04)[2023-12-04]. https://arxiv.org/abs/2002.01155
[27] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4): 600-612.
[28] BAKUROV I, BUZZELLI M, SCHETTINI R, et al. Structural similarity index (SSIM) revisited: a data-driven approach[J]. Expert systems with applications, 2022, 189: 116087.
[29] PANETTA K, GAO Chen, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE journal of oceanic engineering, 2016, 41(3): 541-551.
[30] LIU Xu, LIN Sen, TAO Zhiyong. Learning multiscale pipeline gated fusion for underwater image enhancement[J]. Multimedia tools and applications, 2023, 82(21): 32281-32304.
相似文献/References:
[1]严浙平,曲思瑜,邢文.水下图像增强方法研究综述[J].智能系统学报,2022,17(5):860.[doi:10.11992/tis.202108022]
 YAN Zheping,QU Siyu,XING Wen.An overview of underwater image enhancement methods[J].CAAI Transactions on Intelligent Systems,2022,17():860.[doi:10.11992/tis.202108022]

备注/Memo

收稿日期:2023-12-4。
基金项目:国家重点研发计划项目(2018YFB1403303); 辽宁省教育厅高等学校基本科研项目(LJKMZ20220615); 沈阳理工大学引进高层次人才科研支持计划项目(1010147000915).
作者简介:张瑞航,硕士研究生,主要研究方向为深度学习、水下图像处理。E-mail:zhangruihang@sylu.edu.cn;林森,副教授,博士,主要研究方向为深度学习、图像处理与模式识别。主持省部级科研项目3项,获辽宁省自然科学学术成果奖1项,发表学术论文80余篇。E-mail:lin_sen6@126.com。
通讯作者:林森. E-mail:lin_sen6@126.com

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com