[1]刘优武,张辉,孔森林,等.特征差异增强与残差蒸馏网络结合的医药可见光图像异物检测[J].智能系统学报,2025,20(1):118-127.[doi:10.11992/tis.202311023]
 LIU Youwu,ZHANG Hui,KONG Senlin,et al.Foreign object detection in pharmaceutical visible-light images using feature difference enhancement and residual distillation network[J].CAAI Transactions on Intelligent Systems,2025,20(1):118-127.[doi:10.11992/tis.202311023]
点击复制

特征差异增强与残差蒸馏网络结合的医药可见光图像异物检测

参考文献/References:
[1] 国家药典委员会. 中华人民共和国药典[S]. 2020年版第三部. 北京: 中国医药科技出版社, 2020: 481.
Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China[S]. Part III, 2020 Edition. Beijing: China medical science press, 2020: 481.
[2] PEREZ M, MAIGUY-FOINARD A, BARTHéLéMY C, et al. Particulate matter in injectable drugs: evaluation of risks to patients[J]. Pharmaceutical technology in hospital pharmacy, 2016, 1(2): 91-103.
[3] 徐帆, 杨伶俐, 毛盼盼, 等. 大输液包装材质与注射用药物相容性研究进展与思考[J]. 中国药业, 2014, 23(20): 91-94.
XU Fan, YANG Lingli, MAO Panpan, et al. Research advance and investigation on compatibility of large volume parenteral solution package material with injectable drugs[J]. China pharmaceuticals, 2014, 23(20): 91-94.
[4] 冯晗, 姜勇. 使用改进Yolov5的变电站绝缘子串检测方法[J]. 智能系统学报, 2023, 18(2): 325-332.
FENG Han, JIANG Yong. A substation insulator string detection method based on an improved Yolov5[J]. CAAI transactions on intelligent systems, 2023, 18(2): 325-332.
[5] 刘嘉轩, 胡非易, 张辉, 等. 上下文空间与实例信息的皮肤镜图像自监督分类[J]. 智能系统学报, 2023, 18(4): 783-792.
LIU Jiaxuan, HU Feiyi, ZHANG Hui, et al. Dermoscopic images classification based on context and instance-level feature of self-supervised learning[J]. CAAI transactions on intelligent systems, 2023, 18(4): 783-792.
[6] 郑广智, 彭添强, 肖计春, 等. 基于语义信息增强的化纤丝线网络度检测方法[J]. 自动化学报, 2024, 50(10): 1963-1976.
ZHENG Guangzhi, PENG Tianqiang, XIAO Jichun, et al. A detection method for the interlacing degree of filament yarn based on semantic information enhancement[J]. Acta automatica sinica, 2024, 50(10): 1963-1976.
[7] 康守强, 邢颖怡, 王玉静, 等. 基于无监督深度模型迁移的滚动轴承寿命预测方法[J]. 自动化学报, 2023, 49(12): 2627-2638.
KANG Shouqiang, XING Yingyi, WANG Yujing, et al. Rolling bearing life prediction based on unsupervised deep model transfer[J]. Acta automatica sinica, 2023, 49(12): 2627-2638.
[8] 闫涵, 卢伟, 吴玉虎. 基于轻量化卷积神经网络的金属断口图像识别[J]. 控制与决策, 2024, 39(9): 2858-2866.
YAN Han, LU Wei, WU Yuhu. Metal fracture recognition based on lightweight convolutional neural network[J]. Control and decision, 2024, 39(9): 2858-2866.
[9] WANG Sirui, ZHUO Qing, XIA Ji’an. Detection of glass chips in liquid injection based on computer vision[C]//2015 International Conference on Computational Intelligence and Communication Networks. Jabalpur: IEEE, 2015: 329-331.
[10] DAI Jinzhi. Retracted: drug residue detection system for infusion based on machine vision[C]//2016 International Conference on Smart City and Systems Engineering. Hu’nan: IEEE, 2016: 571-574.
[11] ZHANG Hui, LI Xuanlun, ZHONG Hang, et al. Automated machine vision system for liquid particle inspection of pharmaceutical injection[J]. IEEE transactions on instrumentation and measurement, 2018, 67(6): 1278-1297.
[12] ZHANG Hui, ZHAO Miao, LIU Li, et al. Deep multimodel cascade method based on CNN and random forest for pharmaceutical particle detection[J]. IEEE transactions on instrumentation and measurement, 2020, 69(9): 7028-7042.
[13] YI Junfei, ZHANG Hui, MAO Jianxu, et al. Pharmaceutical foreign particle detection: an efficient method based on adaptive convolution and multiscale attention[J]. IEEE transactions on emerging topics in computational intelligence, 2022, 6(6): 1302-1313.
[14] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2): 303-338.
[15] WANG Jiabao, CHEN Yuming, ZHENG Zhaohui, et al. CrossKD: cross-head knowledge distillation for object detection[EB/OL]. (2023-06-20)[2023-11-17]. https://arxiv.org/abs/2306.11369.
[16] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 3-19.
[18] PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[EB/OL]. (2018-07-17)[2023-11-17]. https://arxiv.org/abs/1807.06514.
[19] YANG Lingxiao, ZHANG Ruyuan , LI Lida, et al. Simam: a simple, parameter-free attention module for convolutional neural networks[C]//Proceedings of the 38th International Conference on Machine Learning. Online: PMLR, 2021: 11863-11874.
[20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[21] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[22] LI Xiang, WANG Wenhai, WU Lijun, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc. , 2020, 33: 21002-21012.
[23] WANG Jiaqi, CHEN Kai, XU Rui, et al. CARAFE: content-aware reassembly of features[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3007-3016.
[24] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 658-666.
[25] ZHENG Zhaohui, YE Rongguang, WANG Ping, et al. Localization distillation for dense object detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 9397-9406.
[26] SUN Siqi, CHENG Yu, GAN Zhe, et al. Patient knowledge distillation for BERT model compression[EB/OL]. (2019-08-25)[2023-11-17]. https://arxiv.org/abs/1908.09355.
[27] ZHANG Haoyang, WANG Ying, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 8510-8519.
[28] ZHANG Shifeng, CHI Cheng, YAO Yongqiang, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9756-9765.
[29] FENG Chengjian, ZHONG Yujie, GAO Yu, et al. TOOD: task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3490-3499.
[30] CHEN Qiang, WANG Yingming, YANG Tong, et al. You only look one-level feature[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 13034-13043.
[31] CHEN Fangyi, ZHANG Han, HU Kai, et al. Enhanced training of query-based object detection via selective query recollection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 23756-23765.

备注/Memo

收稿日期:2023-11-17。
基金项目:科技创新2030—“新一代人工智能”重大项目(2021ZD0114503);国家自然科学基金重大研究计划项目(92148204);国家自然科学基金项目(62027810);湖南省科技创新领军人才项目(2022RC3063);湖南省十大技术攻关项目(2024GK1010);湖南省重点研发计划项目(2023GK2068, 2022GK2011).
作者简介:刘优武,硕士研究生,主要研究方向为深度学习、医药异物检测。E-mail:liuyouwu1999@163.com。;张辉,教授,博士生导师,主要研究方向为计算机视觉。主持科技创新2030—新一代人工智能重大项目、国家自然科学基金共融机器人重大研究计划重点项目、国家重点研发计划子课题、国家科技支撑计划项目子课题等20余项,获省部级科学技术奖励一等奖8项,获2022年湖南省第十三届教学成果特等奖等,获发明专利授权38项,发表学术论文50余篇。E-mail:zhanghuihby@126.com。;孔森林,硕士研究生,主要研究方向为无监督学习和工业图像缺陷检测。E-mail:986735244@qq.com。
通讯作者:张辉. E-mail:zhanghuihby@126.com

更新日期/Last Update: 2025-01-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com