[1]刘优武,张辉,孔森林,等.特征差异增强与残差蒸馏网络结合的医药可见光图像异物检测[J].智能系统学报,2025,20(1):118-127.[doi:10.11992/tis.202311023]
LIU Youwu,ZHANG Hui,KONG Senlin,et al.Foreign object detection in pharmaceutical visible-light images using feature difference enhancement and residual distillation network[J].CAAI Transactions on Intelligent Systems,2025,20(1):118-127.[doi:10.11992/tis.202311023]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第1期
页码:
118-127
栏目:
学术论文—智能系统
出版日期:
2025-01-05
- Title:
-
Foreign object detection in pharmaceutical visible-light images using feature difference enhancement and residual distillation network
- 作者:
-
刘优武1, 张辉2, 孔森林1, 陶岩1, 李冲3
-
1. 长沙理工大学 电气与信息工程学院, 湖南 长沙 410114;
2. 湖南大学 机器人学院, 湖南 长沙 410012;
3. 楚天科技股份有限公司, 湖南 长沙 410600
- Author(s):
-
LIU Youwu1, ZHANG Hui2, KONG Senlin1, TAO Yan1, LI Chong3
-
1. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China;
2. School of Robotics, Hunan University, Changsha 410012, China;
3. Truking Technology Limited, Changsha 410600, China
-
- 关键词:
-
医药; 异物; 轻量化; 深度学习; 蒸馏; 特征差异; 上采样; 灯检
- Keywords:
-
pharmaceutical; foreign objects; lightweight; deep learning; distillation; feature disparity; upsampling; lamp inspection
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202311023
- 摘要:
-
医药中的异物通常形态微弱,导致轻量化算法无法准确检测,而高精度算法通常实时性差。为兼顾医药异物检测的实时性与准确性,提出了一种深度学习蒸馏算法,能够快速、准确地检测药液图像中的异物。首先,在教师网络中引入基于语义特征的上采样方法,增强了教师网络与学生网络之间的特征差异。同时,在学生网络的训练图像中加入随机噪声,提高了在高干扰场景下的鲁棒性。为验证算法的有效性,在灯检设备采集了药液异物数据集并进行了对比实验,蒸馏后平均精度提升了4.1百分点,每秒帧数达到了65,优于目前已有的先进方法。最后,在天池酒液数据集进行拓展实验,检测的平均精度提升了3.9百分点,验证了模型在类似场景中的适用性。
- Abstract:
-
Foreign objects in pharmaceuticals are typically small, which causes difficulty for lightweight algorithms to detect them accurately, while high-performance algorithms often struggle with real-time capability. To balance real-time performance and accuracy, a deep learning distillation algorithm is proposed for the precise and rapid detection of foreign objects in pharmaceutical liquid images. The teacher network incorporates a semantic feature-based upsampling method to enhance the feature disparity between teacher and student networks. In addition, random noise is added to the training images of the student network to improve robustness in high-noise detection scenarios. To validate the effectiveness of the algorithm, a pharmaceutical liquid foreign-object dataset is collected using lamp inspection equipment, and comparative experiments are conducted. After distillation, the average precision improves by 4.1%, and the model achieves 65 frames per second, which surpasses current state-of-the-art methods. Extended experiments on the Tianchi liquor dataset show a 3.9% improvement in detection accuracy, which demonstrates the applicability of the model in similar scenarios.
备注/Memo
收稿日期:2023-11-17。
基金项目:科技创新2030—“新一代人工智能”重大项目(2021ZD0114503);国家自然科学基金重大研究计划项目(92148204);国家自然科学基金项目(62027810);湖南省科技创新领军人才项目(2022RC3063);湖南省十大技术攻关项目(2024GK1010);湖南省重点研发计划项目(2023GK2068, 2022GK2011).
作者简介:刘优武,硕士研究生,主要研究方向为深度学习、医药异物检测。E-mail:liuyouwu1999@163.com。;张辉,教授,博士生导师,主要研究方向为计算机视觉。主持科技创新2030—新一代人工智能重大项目、国家自然科学基金共融机器人重大研究计划重点项目、国家重点研发计划子课题、国家科技支撑计划项目子课题等20余项,获省部级科学技术奖励一等奖8项,获2022年湖南省第十三届教学成果特等奖等,获发明专利授权38项,发表学术论文50余篇。E-mail:zhanghuihby@126.com。;孔森林,硕士研究生,主要研究方向为无监督学习和工业图像缺陷检测。E-mail:986735244@qq.com。
通讯作者:张辉. E-mail:zhanghuihby@126.com
更新日期/Last Update:
2025-01-05