[1]陆军,鲁林超,翟晓阳,等.面向道路交通场景的高效3D目标检测[J].智能系统学报,2025,20(1):91-100.[doi:10.11992/tis.202311013]
 LU Jun,LU Linchao,ZHAI Xiaoyang,et al.High-efficiency 3D object detection for road traffic scenes[J].CAAI Transactions on Intelligent Systems,2025,20(1):91-100.[doi:10.11992/tis.202311013]
点击复制

面向道路交通场景的高效3D目标检测

参考文献/References:
[1] HUANG Keli, SHI Botian, LI Xiang, et al. Multi-modal sensor fusion for auto driving perception: a survey[EB/OL]. (2022-02-06)[2023-11-13]. https://arxiv.org/abs/2202.02703.
[2] 刘通, 高思洁, 聂为之. 基于多模态信息融合的多目标检测算法[J]. 激光与光电子学进展, 2022, 59(8): 339-348.
LIU Tong, GAO Sijie, NIE Weizhi. Multitarget detection algorithm based on multimodal information fusion[J]. Laser & optoelectronics progress, 2022, 59(8): 339-348.
[3] SONG Ziying, LIU Lin, JIA Feiyang, et al. Robustness-aware 3D object detection in autonomous driving: a review and outlook[EB/OL]. (2024-01-12)[2024-08-02]. http://arxiv.org/abs/2401.06542v3.
[4] VORA S, LANG A H, HELOU B, et al. PointPainting: sequential fusion for 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 4603-4611.
[5] WANG Chunwei, MA Chao, ZHU Ming, et al. PointAugmenting: cross-modal augmentation for 3D object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 11789-11798.
[6] XU Shaoqing, ZHOU Dingfu, FANG Jin, et al. FusionPainting: multimodal fusion with adaptive attention for 3D object detection[C]//2021 IEEE International Intelligent Transportation Systems Conference. Indianapolis: IEEE, 2021: 3047-3054.
[7] BAI Xuyang, HU Zeyu, ZHU Xinge, et al. TransFusion: robust LiDAR-camera fusion for 3D object detection with transformers[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 1080-1089.
[8] LIANG Tingting, XIE Hongwei, YU Kaicheng, et al. Bevfusion: A simple and robust lidar-camera fusion framework[J]. Advances in neural information processing systems, 2022, 35: 10421-10434.
[9] LI Yingwei, YU A W, MENG Tianjian, et al. DeepFusion: lidar-camera deep fusion for multi-modal 3D object detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 17161-17170.
[10] HU Haotian, WANG Fanyi, SU Jingwen, et al. EA-BEV: edge-aware bird’s-eye-view projector for 3D object detection[EB/OL]. (2023-03-31)[2023-11-13]. https://arxiv.org/abs/2303.17895.
[11] YAN Junjie, LIU Yingfei, SUN Jianjian, et al. Cross modal transformer via coordinates encoding for 3D object dectection[EB/OL]. (2023-01-03)[2023-11-13]. https://arxiv.org/abs/2301.01283.
[12] WANG Haiyang, TANG Hao, SHI Shaoshuai, et al. UniTR: a unified and efficient multi-modal transformer for bird’s-eye-view representation[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 6792-6802.
[13] 张新钰, 邹镇洪, 李志伟, 等. 面向自动驾驶目标检测的深度多模态融合技术[J]. 智能系统学报, 2020, 15(4): 758-771.
ZHANG Xinyu, ZOU Zhenhong, LI Zhiwei, et al. Deep multi-modal fusion in object detection for autonomous driving[J]. CAAI transactions on intelligent systems, 2020, 15(4): 758-771.
[14] 鲁斌, 杨振宇, 孙洋, 等. 基于多通道交叉注意力融合的三维目标检测算法[J]. 智能系统学报, 2024, 19(4): 885-897.
LU Bin, YANG Zhenyu, SUN Yang, et al. 3D object detection algorithm with multi-channel cross attention fusion[J]. CAAI transactions on intelligent systems, 2024, 19(4): 885-897.
[15] YAN Yan, MAO Yuxing, LI Bo. SECOND: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[16] LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12689-12697.
[17] YANG Zetong, ZHOU Yin, CHEN Zhifeng, et al. 3D-MAN: 3D multi-frame attention network for object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 1863-1872.
[18] ZHOU Yin, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018.
[19] YANG Zetong, SUN Yanan, LIU Shu, et al. STD: sparse-to-dense 3D object detector for point cloud[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1951-1960.
[20] YANG Zetong, SUN Yanan, LIU Shu, et al. 3DSSD: point-based 3D single stage object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11037-11045.
[21] SHI Shaoshuai, GUO Chaoxu, JIANG Li, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10526-10535.
[22] SHI Shaoshuai, WANG Xiaogang, LI Hongsheng. PointRCNN: 3D object proposal generation and detection from point cloud[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 770-779.
[23] LI Bo, YAN Junjie, WU Wei, et al. High performance visual tracking with siamese region proposal network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8971-8980.
[24] QI C R, YI Li, SU Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. (2017-06-07)[2023-11-13]. http://arxiv.org/abs/1706.02413v1.
[25] JIANG Yingying, ZHU Xiangyu, WANG Xiaobing, et al. R2CNN: rotational region CNN for orientation robust scene text detection[EB/OL]. (2017-06-29)[2023-11-13]. https://arxiv.org/abs/1706.09579.
[26] HOU Yi, ZHANG Hong, ZHOU Shilin, et al. Efficient ConvNet feature extraction with multiple RoI pooling for landmark-based visual localization of autonomous vehicles[J]. Mobile information systems, 2017: 8104386.
[27] LI Yangyan, BU Rui, SUN Mingchao, et al. Pointcnn: convolution on X-transformed points[J]. Advances in neural information processing systems, 2018, 31: 820-830.
[28] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007.
[29] WANG Hua, NIE Feiping, HUANG Heng. Robust distance metric learning via simultaneous l1-norm minimization and maximization[C]//Proceedings of the 31st International Conference on Machine Learning. Beijing: PMLR, 2014: 1836-1844.
[30] GROH F, WIESCHOLLEK P, LENSCH H P A. Flex-convolution[C]//Asian Conference on Computer Vision. Cham: Springer, 2018: 105-122.
[31] DOVRAT O, LANG I, AVIDAN S. Learning to sample[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2755-2764.
[32] YANG Jiancheng, ZHANG Qiang, NI Bingbing, et al. Modeling point clouds with self-attention and gumbel subset sampling[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 3318-3327.
[33] XU K, BA J L, KIROS R, et al. Show, attend and tell: Neural image caption generation with visual attention[C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning. Lille: ICML, 2015: 2048-2057.
[34] BROWN R A. Building a balanced k-d tree in O(kn log n) time[EB/OL]. (2014-10-20)[2023-11-13]. http://arxiv.org/abs/1410.5420v46.
[35] CHEGN Xiaozhi, MA Huimin, WAN Ji, et al. Multi-view 3d object detection network for autonomous driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1907–1915.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]丁科,谭营.GPU通用计算及其在计算智能领域的应用[J].智能系统学报,2015,10(1):1.[doi:10.3969/j.issn.1673-4785.201403072]
 DING Ke,TAN Ying.A review on general purpose computing on GPUs and its applications in computational intelligence[J].CAAI Transactions on Intelligent Systems,2015,10():1.[doi:10.3969/j.issn.1673-4785.201403072]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[6]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[7]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[8]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[9]杨梦铎,栾咏红,刘文军,等.基于自编码器的特征迁移算法[J].智能系统学报,2017,12(6):894.[doi:10.11992/tis.201706037]
 YANG Mengduo,LUAN Yonghong,LIU Wenjun,et al.Feature transfer algorithm based on an auto-encoder[J].CAAI Transactions on Intelligent Systems,2017,12():894.[doi:10.11992/tis.201706037]
[10]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]

备注/Memo

收稿日期:2023-11-13。
基金项目:黑龙江省自然科学基金项目(F201123).
作者简介:陆军,教授,博士生导师,博士,主要研究方向为计算机视觉、机器感知、机械臂控制。科技部科技型中小企业创新基金项目评审专家,国家自然科学基金同行评议专家。编写著作5部,发表学术论文80余篇。E-mail:lujun0260@sina.com。;鲁林超,硕士,主要研究方向为三维目标检测、计算机视觉。E-mail:llczsr@163.com。;翟晓阳,硕士,主要研究方向为三维目标检测、计算机视觉。E-mail:769987461@qq.com。
通讯作者:陆军. E-mail:lujun0260@sina.com

更新日期/Last Update: 2025-01-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com