[1]陆军,鲁林超,翟晓阳,等.面向道路交通场景的高效3D目标检测[J].智能系统学报,2025,20(1):91-100.[doi:10.11992/tis.202311013]
LU Jun,LU Linchao,ZHAI Xiaoyang,et al.High-efficiency 3D object detection for road traffic scenes[J].CAAI Transactions on Intelligent Systems,2025,20(1):91-100.[doi:10.11992/tis.202311013]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第1期
页码:
91-100
栏目:
学术论文—机器感知与模式识别
出版日期:
2025-01-05
- Title:
-
High-efficiency 3D object detection for road traffic scenes
- 作者:
-
陆军, 鲁林超, 翟晓阳, 刘霜
-
哈尔滨工程大学 智能科学与工程学院, 黑龙江 哈尔滨 150001
- Author(s):
-
LU Jun, LU Linchao, ZHAI Xiaoyang, LIU Shuang
-
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
深度学习; 3D目标检测; 点云; 随机采样; 局部特征聚合; 注意力机制; 自动驾驶
- Keywords:
-
deep learning; 3D object detection; point cloud; random sampling; local feature aggregation; attention mechanism; autonomous driving
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202311013
- 摘要:
-
针对当前两阶段的点云目标检测算法PointRCNN: 3D object proposal generation and detection from point cloud 在点云降采样阶段时间开销大以及低效性的问题,本研究基于PointRCNN网络提出RandLA-RCNN(random sampling and an effectivelocal feature aggregator with region-based convolu-tional neural networks)架构。首先,利用随机采样方法在处理庞大点云数据时的高效性,对大场景点云数据进行下采样;然后,通过对输入点云的每个近邻点的空间位置编码,有效提高从每个点的邻域提取局部特征的能力,并利用基于注意力机制的池化规则聚合局部特征向量,获取全局特征;最后使用由多个局部空间编码单元和注意力池化单元叠加形成的扩展残差模块,来进一步增强每个点的全局特征,避免关键点信息丢失。实验结果表明,该检测算法在保留PointRCNN网络对3D目标的检测优势的同时,相比PointRCNN检测速度提升近两倍,达到16 f/s的推理速度。
- Abstract:
-
Based on the 3D object proposal generation and detection from pointcloud, namely PointRCNN network, this study proposes an RandLA-RCNN architecture to address the issues of high time cost and inefficiency in the point cloud downsampling stage of the current two-stage point cloud object detection algorithm. Firstly, by taking advantage of the efficiency of random sampling method, the large-scale point cloud data are downsampled to handle massive point cloud data. Then, the spatial positions of each neighboring point of the input point cloud are encoded to effectively enhance the ability of each point to extract local features from the neighborhood. Attention-based pooling rules are used to aggregate local feature vectors and obtain global features. Finally, an extended residual module formed by stacking multiple local spatial encoding units and attention pooling units is used to further enhance the global features of each point and avoid the loss of key point information. Experimental results show that this detection algorithm retains the advantages of PointRCNN network in detecting 3D objects, while achieves nearly twice the detection speed compared with PointRCNN, reaching an inference speed of 16 frames per second.
备注/Memo
收稿日期:2023-11-13。
基金项目:黑龙江省自然科学基金项目(F201123).
作者简介:陆军,教授,博士生导师,博士,主要研究方向为计算机视觉、机器感知、机械臂控制。科技部科技型中小企业创新基金项目评审专家,国家自然科学基金同行评议专家。编写著作5部,发表学术论文80余篇。E-mail:lujun0260@sina.com。;鲁林超,硕士,主要研究方向为三维目标检测、计算机视觉。E-mail:llczsr@163.com。;翟晓阳,硕士,主要研究方向为三维目标检测、计算机视觉。E-mail:769987461@qq.com。
通讯作者:陆军. E-mail:lujun0260@sina.com
更新日期/Last Update:
2025-01-05