[1]吴瑞林,葛泉波,刘华平.基于YOLOX的类增量印刷电路板缺陷检测方法[J].智能系统学报,2024,19(4):1061-1070.[doi:10.11992/tis.202309044]
WU Ruilin,GE Quanbo,LIU Huaping.Class-incremental printed circuit board defect detection method based on YOLOX[J].CAAI Transactions on Intelligent Systems,2024,19(4):1061-1070.[doi:10.11992/tis.202309044]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第4期
页码:
1061-1070
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2024-07-05
- Title:
-
Class-incremental printed circuit board defect detection method based on YOLOX
- 作者:
-
吴瑞林1, 葛泉波1, 刘华平2
-
1. 南京信息工程大学 自动化学院, 江苏 南京 210044;
2. 清华大学 计算机科学与技术系, 北京 100084
- Author(s):
-
WU Ruilin1, GE Quanbo1, LIU Huaping2
-
1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
-
- 关键词:
-
深度学习; 印刷电路板; 类增量; 增量学习; 缺陷检测; 目标检测; 动态检测; 知识蒸馏; 灾难性遗忘
- Keywords:
-
deep learning; printed circuit board; class-incremental; incremental learning; defect detection; object detection; dynamic detection; knowledge distillation; catastrophic forgetting
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202309044
- 摘要:
-
为了应对更加实际的增量式印刷电路板缺陷检测场景,本文将知识蒸馏与YOLOX相结合,提出了一种基于YOLOX的类增量印刷电路板缺陷检测方法。在只使用新训练数据的情况下,模型能够检测出所有学过的缺陷类型。通过对模型的输出特征和中间特征使用知识蒸馏来促进旧缺陷类别知识的传递,使得学生模型能够有效保留教师模型在旧缺陷类别上的检测性能。实验结果表明,本文方法能够显著缓解增量学习过程中的灾难性遗忘问题,在两阶段增量场景下,模型对所有缺陷的平均检测精度为88.5%,参数量为25.3×106,检测速度为39.8 f/s,便于工业设备部署的同时,可以满足增量式检测场景下印刷电路板(printed circuit board, PCB)质检的检测精度和检测速度要求。
- Abstract:
-
To cope with more practical incremental printed circuit board detection scenarios, by combining the knowledge distillation with the YOLOX, this paper proposes a class-incremental Printed Circuit Board defect detection method based on YOLOX. The model can detect all learned defect types when only new training data is used. The transfer of knowledge about old defect categories is facilitated by using knowledge distillation for the model’s output features and intermediate features, enabling the student model to effectively retain the detection performance of the teacher model on old defect categories. The experimental results show that the method in this paper can significantly alleviate the catastrophic forgetting problem during the incremental learning process. Under the two-stage incremental scenario, the model has a mean average precision of 88.5% for all defects, a parameter size of 25.3 M, and an inspection speed of 39.8 f/s, which facilitates the deployment of industrial equipment and at the same time, it can satisfy the detection accuracy of printed circuit board (PCB) quality inspection and the inspection speed requirement in incremental detection scenarios.
备注/Memo
收稿日期:2023-09-27。
基金项目:江苏高校“青蓝工程”项目(R2023Q07).
作者简介:吴瑞林,硕士研究生,主要研究方向为计算机视觉和缺陷检测。E-mail:ruilin_wu0516@126.com;葛泉波,教授,博士生导师,主要研究方向为多源信息融合、自主无人系统和协同目标识别。中国自动化学会青年工作委员会副主任委员、智能自动化专业委员。主持国家自然科学基金项目(共4项,其中1项重点),发表学术论文100余篇。E-mail:geqb@ nuist.edu.cn;刘华平,教授,博士生导师,主要研究方向为机器人感知、学习与控制、多模态信息融合。吴文俊人工智能科学技术奖获得者、中国人工智能学会理事。主持国家杰出青年科学基金1项、国家自然科学基金1项。发表学术论文100余篇。E-mail:hpliu@ tsinghua.edu.cn
通讯作者:刘华平. E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update:
1900-01-01