[1]王征,屈新雨,李厚朴.自主式水下滑翔机集群应用及关键技术研究[J].智能系统学报,2024,19(6):1341-1350.[doi:10.11992/tis.202309041]
 WANG Zheng,QU Xinyu,LI Houpu.Research on autonomous underwater glider cluster application and key techniques[J].CAAI Transactions on Intelligent Systems,2024,19(6):1341-1350.[doi:10.11992/tis.202309041]
点击复制

自主式水下滑翔机集群应用及关键技术研究

参考文献/References:
[1] 中国政府网. 外交部就中国捕获美国无人潜航器事件等答问[EB/OL]. (2016-12-19)[2023-12-29]. https://www.gov.cn/xinwen/2016-12/19/content_5150241.htm#1.
[2] 孙雨桐, 成丹, 杨绍琼, 等. 水下滑翔机观测台风“天鸽” 过境的海洋响应研究[J]. 数字海洋与水下攻防, 2023, 6(2): 198-208.
SUN Yutong, CHENG Dan, YANG Shaoqiong, et al. Study on ocean response of typhoon hato based on underwater glider observation[J]. Digital ocean & underwater warfare, 2023, 6(2): 198-208.
[3] STEWART M, PAVLOS J, BOAT E. A means to networked persistent undersea surveillance[C]//Submarine Technology Symposium. Washington DC : University of Washington Tacoma, 2006: 2-38.
[4] 李淑凤. 面向中尺度涡三维结构观测的水下滑翔机组网策略研究[D]. 天津: 天津大学, 2020.
LI Shufeng. The network strategy of underwater gliders for the observation of three-dimensional structure of mesoscale eddies[D]. Tianjin: Tianjin University, 2020.
[5] 薛多锐. 基于虚拟领航者的多AUV混杂编队控制[D]. 哈尔滨: 哈尔滨工程大学, 2019.
XUE Duorui. Multi-AUV hybrid formation control based on virtual leader[D]. Harbin: Harbin Engineering University, 2019.
[6] YUAN Jian, ZHANG Feng li, ZHOU Zhong hai. Finite-time formation control for autonomous underwater vehicles with limited speed and communication range[J]. Applied mechanics and materials, 2014, 511/512: 909-912.
[7] LIANG Qingwei, SUN Tianyuan, WANG Dongdong. Time-varying reliability indexes for multi-AUV cooperative system[J]. Journal of systems engineering and electronics, 2017, 28(2): 401-406.
[8] 梁晓龙, 孙强, 尹忠海, 等. 大规模无人系统集群智能控制方法综述[J]. 计算机应用研究, 2015, 32(1): 11-16.
LIANG Xiaolong, SUN Qiang, YIN Zhonghai, et al. Review on large-scale unmanned system swarm intelligence control method[J]. Application research of computers, 2015, 32(1): 11-16.
[9] 王天应. 基于融合启发式算法的水下滑翔机编队路径规划研究[D]. 天津: 天津大学, 2020.
WANG Tianying. Research on path planning for underwater glider formation based on a fusion heuristic algorithm[D]. Tianjin: Tianjin University, 2020.
[10] 杨洋, 王征, 胡致远, 等. 无人水下航行器编队控制研究现状及技术综述[J]. 舰船电子工程, 2022, 42(2): 1-7,94.
YANG Yang, WANG Zheng, HU Zhiyuan, et al. Research status and technology review on formation control of unmanned underwater vehicle[J]. Ship electronic engineering, 2022, 42(2): 1-7,94.
[11] WANG P K C. Navigation strategies for multiple autonomous mobile robots moving in formation[J]. Journal of robotic systems, 1991, 8(2): 177-195.
[12] DESAI J P, OSTROWSKI J P, KUMAR V. Modeling and control of formations of nonholonomic mobile robots[J]. IEEE transactions on robotics and automation, 2001, 17(6): 905-908.
[13] 张润锋, 杨绍琼, 牛文栋, 等. 强扰动环境下水下滑翔机编队稳定性分析[J]. 舰船科学技术, 2020, 42(23): 67-71.
ZHANG Runfeng, YANG Shaoqiong, NIU Wendong, et al. Stability analysis of underwater glider fleet under strong disturbance[J]. Ship science and technology, 2020, 42(23): 67-71.
[14] LEONARD N, FIORELLI E. Virtual leaders, artificial potentials control of groups and coordinated[C]//Proc of the 40th IEEE Conference on Decision and Control. Orlando: IEEE, 2001: 2968-2973.
[15] 王冬梅, 方华京. 基于虚拟领航者的智能群体群集运动控制[J]. 华中科技大学学报(自然科学版), 2008, 36(10): 5-7.
WANG Dongmei, FANG Huajing. Virtual leaders-based control of flocking motion of intelligent swarm[J]. Journal of Huazhong University of Science and Technology (nature science edition), 2008, 36(10): 5-7.
[16] 周伟江, 陈涛, 任牧青. 基于虚拟领航者的UUV空间编队方法[J]. 应用科技, 2011, 38(11): 9-12.
ZHOU Weijiang, CHEN Tao, REN Muqing. Virtual-leader based spatial formation method for UUV[J]. Applied science and technology, 2011, 38(11): 9-12.
[17] MA Xiaojuan, WANG Yanhui, LI Shuai, et al. Formation control of discrete-time nonlinear multi-glider systems for both leader–follower and no-leader scenarios under switching topology: cases for a fleet consisting of a wave glider and multiple underwater gliders[J]. Ocean engineering, 2023, 276: 114003.
[18] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[C]//Proceedings of 1985 IEEE International Conference on Robotics and Automation. St. Louis: IEEE, 1985: 500-505.
[19] 李沛伦, 杨启. 基于改进人工势场法的水下滑翔机路径规划[J]. 舰船科学技术, 2019, 41(7): 89-93.
LI Peilun, YANG Qi. Path planning for underwater glider based on improved artificial potential field method[J]. Ship science and technology, 2019, 41(7): 89-93.
[20] 谢景鹏. 多机器鱼系统任务分配及群体行为控制方法研究[D]. 兰州: 兰州交通大学, 2020.
XIE Jingpeng. Research on task assignment and group behavior control of multi-robot fish system[D]. Lanzhou: Lanzhou Jiatong University, 2020.
[21] 庞师坤, 梁晓锋, 李英辉, 等. 基于零空间行为法的自主水下机器人避障策略[J]. 上海交通大学学报, 2020, 54(3): 295-304.
PANG Shikun, LIANG Xiaofeng, LI Yinghui, et al. Collision avoidance strategy for autonomous underwater vehicle based on null-space-based behavioral approach[J]. Journal of Shanghai Jiao Tong University, 2020, 54(3): 295-304.
[22] 刘瑞轩, 张永林. 多水下机器人编队控制[J]. 计算机与数字工程, 2019, 47(2): 349-353.
LIU Ruixuan, ZHANG Yonglin. Multi-underwater robot formation control[J]. Computer & digital engineering, 2019, 47(2): 349-353.
[23] LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous robots, 1997, 4(4): 387-403.
[24] 薛冬阳. 水下滑翔机编队协调控制与不确定性研究[D]. 天津: 天津大学, 2017.
XUE Dongyang. Research on coordinate control and uncertainty analysis for underwater glider formation[D]. Tianjin: Tianjin University, 2017.
[25] 方一成. 多AUV路径规划与编队控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
FANG Yicheng. Research on multiple AUV path planning and formation control[D]. Harbin: Harbin Engineering University, 2018.
[26] LI Shuai, WANG Yanhui, MA Xiaojuan, et al. A method based on virtual hinges for multi-underwater glider formation[J]. Ocean engineering, 2023, 286: 115565.
[27] EICHHORN M. A new concept for an obstacle avoidance system for the AUV “SLOCUM glider” operation under ice[C]//OCEANS 2009-EUROPE. Bremen: IEEE, 2009: 1-8.
[28] HERNáNDEZ J D, VIDAL E, VALLICROSA G, et al. Online path planning for autonomous underwater vehicles in unknown environments[C]//2015 IEEE International Conference on Robotics and Automation. Seattle: IEEE, 2015: 1152-1157.
[29] MARINO A, ANTONELLI G. Experiments on sampling/patrolling with two autonomous underwater vehicles[J]. Robotics and autonomous systems, 2015, 67: 61-71.
[30] 周耀鉴, 刘世杰, 俞建成, 等. 基于局部流场构建的水下滑翔机路径规划[J]. 机器人, 2018, 40(1): 1-7.
ZHOU Yaojian, LIU Shijie, YU Jiancheng, et al. Underwater glider path planning based on local flow field construction[J]. Robot, 2018, 40(1): 1-7.
[31] 何柏岩, 杜金辉, 杨绍琼, 等. 基于VMD-LSSVM的水下滑翔机深平均流预测[J]. 天津大学学报(自然科学与工程技术版), 2021, 54(4): 388-396.
HE Baiyan, DU Jinhui, YANG Shaoqiong, et al. Prediction of underwater glider depth-averaged current velocity based on VMD-LSSVM[J]. Journal of Tianjin University (science and technology edition), 2021, 54(4): 388-396.
[32] LIU Yanji, MA Jie, MA Ning, et al. Path planning for underwater glider under control constraint[J]. Advances in mechanical engineering, 2017, 9(8): 168781401771718.
[33] 朱心科, 俞建成, 王晓辉. 多水下滑翔机海洋采样路径规划[J]. 信息与控制, 2012, 41(4): 433-438.
ZHU Xinke, YU Jiancheng, WANG Xiaohui. Path planning of multiple underwater gliders for ocean sampling[J]. Information and control, 2012, 41(4): 433-438.
[34] SU Yishan, ZHANG Lin, LI Yun, et al. A glider-assist routing protocol for underwater acoustic networks with trajectory prediction methods[J]. IEEE access, 2020, 8: 154560-154572.
[35] NI Jianjun, WU Liuying, WANG Shihao, et al. 3D real-time path planning for AUV based on improved bio-inspired neural network[C]//2016 IEEE International Conference on Consumer Electronics. Nantou: IEEE, 2016: 1-2.
[36] CHENG C T, FALLAHI K, LEUNG H, et al. A genetic algorithm-inspired UUV path planner based on dynamic programming[J]. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews), 2012, 42(6): 1128-1134.
[37] ZAMUDA A, SOSA J D H. Success history applied to expert system for underwater glider path planning using differential evolution[J]. Expert systems with applications, 2019, 119: 155-170.
[38] 王浩亮, 王成林, 张春来, 等. 基于AQPSO算法的圆碟形水下滑翔机路径规划[J]. 船舶工程, 2020, 42(2): 13-19,27.
WANG Haoliang, WANG Chenglin, ZHANG Chunlai, et al. Path planning of saucer-type autonomous underwater glider based on AQPSO algorithm[J]. Ship engineering, 2020, 42(2): 13-19,27.
[39] 冯炜, 张静远, 王众, 等. 海洋环境下基于量子行为粒子群优化的时间最短路径规划方法[J]. 海军工程大学学报, 2017, 29(6): 72-77.
FENG Wei, ZHANG Jingyuan, WANG Zhong, et al. A time-optimal path planning method based on quantum-behaved particle swarm optimization in ocean environment[J]. Journal of Naval University of Engineering, 2017, 29(6): 72-77.
[40] HAN Guangjie, ZHOU Zeren, ZHANG Tongwei, et al. Ant-colony-based complete-coverage path-planning algorithm for underwater gliders in ocean areas with thermoclines[J]. IEEE transactions on vehicular technology, 2020, 69(8): 8959-8971.
[41] 宋大雷, 臧文川, 郭亭亭, 等. 水下滑翔机长航程全局路径规划[J]. 控制工程, 2020, 27(10): 1679-1685.
SONG Dalei, ZANG Wenchuan, GUO Tingting, et al. Global path planning for long range voyage of underwater gliders[J]. Control engineering of China, 2020, 27(10): 1679-1685.
[42] LAN Wei, JIN Xiang, CHANG Xin, et al. Path planning for underwater gliders in time-varying ocean current using deep reinforcement learning[J]. Ocean engineering, 2022, 262: 112226.
[43] ZHU Xinke, JIN Xianglong, YU Jiancheng, et al. Path planning in stronger ocean current for underwater glider[C]//2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Shenyang: IEEE, 2015: 891-895.
[44] ZHANG Honghan, GONG Liming, CHEN Tao, et al. Global path planning methods of UUV in coastal environment[C]//2016 IEEE International Conference on Mechatronics and Automation. Harbin: IEEE, 2016: 1018-1023.
[45] ZHANG Guanglei, JIA Heming. Global path planning of AUV based on improved ant colony optimization algorithm[C]//2012 IEEE International Conference on Automation and Logistics. Zhengzhou: IEEE, 2012: 606-610.
[46] 朱佳莹, 高茂庭. 融合粒子群与改进蚁群算法的AUV路径规划算法[J]. 计算机工程与应用, 2021, 57(6): 267-273.
ZHU Jiaying, GAO Maoting. AUV path planning based on particle swarm optimization and improved ant colony optimization[J]. Computer engineering and applications, 2021, 57(6): 267-273.
[47] ZHOU Hexiong, ZENG Zheng, LIAN Lian. Adaptive re-planning of AUVs for environmental sampling missions: a fuzzy decision support system based on multi-objective particle swarm optimization[J]. International journal of fuzzy systems, 2018, 20(2): 650-671.
[48] JI Haijun, HU Hao, PENG Xingguang. Multi-underwater gliders coverage path planning based on ant colony optimization[J]. Electronics, 2022, 11(19): 3021.
[49] 于浩淼. 非线性因素约束下欠驱动UUV轨迹跟踪控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
YU Haomiao. Research on trajectory tracking control for underactuated UUV with nonlinear constrained factors[D]. Harbin: Harbin Engineering University, 2016.
[50] 毕凤阳, 张嘉钟, 魏英杰, 等. 欠驱动AUV的鲁棒位置跟踪控制[J]. 哈尔滨工业大学学报, 2010, 42(11): 1690-1695.
BI Fengyang, ZHANG Jiazhong, WEI Yingjie, et al. Robust position tracking control design for underactuated AUVs[J]. Journal of Harbin Institute of Technology, 2010, 42(11): 1690-1695.
[51] 高剑, 徐德民, 严卫生, 等. 欠驱动自主水下航行器轨迹跟踪控制[J]. 西北工业大学学报, 2010, 28(3): 404-408.
GAO Jian, XU Demin, YAN Weisheng, et al. Applying cascaded systems theory to ensuring globally uniformly asymptotical stability of trajectory tracking controller of underactuated autonomous underwater vehicle(AUV)[J]. Journal of Northwestern Polytechnical University, 2010, 28(3): 404-408.
[52] 孙兵, 朱大奇, 邓志刚. 开架水下机器人生物启发离散轨迹跟踪控制[J]. 控制理论与应用, 2013, 30(4): 454-462.
SUN Bing, ZHU Daqi, DENG Zhigang. Bio-inspired discrete trajectory-tracking control for open-frame underwater vehicles[J]. Control theory & applications, 2013, 30(4): 454-462.
[53] 夏国清, 杨莹, 赵为光. 欠驱动AUV模糊神经网络L2增益鲁棒跟踪控制[J]. 控制与决策, 2013, 28(3): 351-356.
XIA Guoqing, YANG Ying, ZHAO Weiguang. FNN-based L2 following control of underactuated autonomous underwater vehicles[J]. Control and decision, 2013, 28(3): 351-356.
[54] 徐健, 汪慢, 乔磊, 等. 欠驱动UUV三维轨迹跟踪的反步动态滑模控制[J]. 华中科技大学学报(自然科学版), 2015, 43(8): 107-113.
XU Jian, WANG Man, QIAO Lei, et al. Backstepping dynamical sliding mode controller for threedimensional trajectory tracking of underactuated UUV[J]. Journal of Huazhong University of Science and Technology (natural science edition), 2015, 43(8): 107-113.
[55] 刘丽萍, 王红燕. 基于海流观测的欠驱动AUV自适应反演滑模轨迹跟踪[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(7): 745-753.
LIU Liping, WANG Hongyan. Adaptive backstepping sliding mode for underactuated AUV trajectory tracking based on ocean current observer[J]. Journal of Tianjin University (science and technology edition), 2020, 53(7): 745-753.
[56] 俞建成, 张艾群, 王晓辉, 等. 基于模糊神经网络水下机器人直接自适应控制[J]. 自动化学报, 2007, 33(8): 840-846.
YU Jiancheng, ZHANG Aiqun, WANG Xiaohui, et al. Direct adaptive control of underwater vehicles based on fuzzy neural networks[J]. Acta automatica sinica, 2007, 33(8): 840-846.
[57] 石晴晴, 张润锋, 张连洪, 等. 基于强化学习算法的水下滑翔机路径跟踪研究[J]. 中国机械工程, 2023, 34(9): 1100-1110.
SHI Qingqing, ZHANG Runfeng, ZHANG Lianhong, et al. Research on underwater gliders path tracking based on reinforcement learning algorithm[J]. China mechanical engineering, 2023, 34(9): 1100-1110.
[58] YANG Zhijin, WANG Yanhui, WU Zhiliang, et al. Mechanism design of controllable wings for autonomous underwater gliders[C]//OCEANS 2014. Taipei: IEEE, 2014: 1-5.
[59] 马峥, 李永成, 潘定一, 等. 水下滑翔机仿生推进水动力学特性研究[C]// 第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集(上册). 北京:海洋出版社, 2017: 212-226.
MA Zheng, LI Yongcheng, PAN Dingyi, et al. Hydrodynamic performance on bionic propulsion of an underwater glider[C]//The 14th National Hydrodynamics Academic Conference and the 28th National Symposium on Hydrodynamics. Beijing: Ocean Press, 2017: 212-226.
[60] 马骉, 张宏伟, 王延辉, 等. 混合驱动水下滑翔机动力学特性与效率分析[J]. 机械设计, 2017, 34(8): 26-31.
MA Biao, ZHANG Hongwei, WANG Yanhui, et al. Dynamic characteristics and efficiency analysis of hybrid underwater glider[J]. Journal of machine design, 2017, 34(8): 26-31.
相似文献/References:
[1]李明.无人潜航器DVL测速组合定位校正阻尼抑制方法[J].智能系统学报,2018,13(2):322.[doi:10.11992/tis.201612039]
 LI Ming.Inhibition of oscillation using Doppler external velocity damping in navigation of unmanned submarine[J].CAAI Transactions on Intelligent Systems,2018,13():322.[doi:10.11992/tis.201612039]

备注/Memo

收稿日期:2023-9-25。
基金项目:国家自然科学基金项目(42122025,42374050).
作者简介:王征,副教授,博士,主要研究方向为智能控制技术、水下无人系统。E-mail:marchy618@163.com;屈新雨,硕士研究生,主要研究方向为水下无人系统。E-mail:602257804@qq.com;李厚朴,教授,博士,主要研究方向为海洋测绘。发表学术论文60余篇。E-mail:lihoupu1985@126.com。
通讯作者:王征. E-mail:marchy618@163.com

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com