[1]田枫,卫宁彬,刘芳,等.基于时空-动作自适应融合网络的油田作业行为识别[J].智能系统学报,2024,19(6):1407-1418.[doi:10.11992/tis.202309021]
 TIAN Feng,WEI Ningbin,LIU Fang,et al.Oilfield operation behavior recognition based on spatio-temporal and action adaptive fusion network[J].CAAI Transactions on Intelligent Systems,2024,19(6):1407-1418.[doi:10.11992/tis.202309021]
点击复制

基于时空-动作自适应融合网络的油田作业行为识别

参考文献/References:
[1] 富倩. 人体行为识别研究[J]. 信息与电脑(理论版), 2017(24): 146-147.
FU Qian. Analysis of human behavior recognition[J]. China computer & communication(theoretical edition), 2017(24): 146-147.
[2] 梁绪, 李文新, 张航宁. 人体行为识别方法研究综述[J]. 计算机应用研究, 2022, 39(3): 651-660.
LIANG Xu, LI Wenxin, ZHANG Hangning. Review of research on human action recognition methods[J]. Application research of computers, 2022, 39(3): 651-660.
[3] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4489-4497.
[4] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4724-4733.
[5] TRAN D, WANG Heng, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6450-6459.
[6] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2014: 568-576.
[7] WANG Limin, XIONG Yuanjun, WANG Zhe, et al. Temporal segment networks: towards good practices for deep action recognition[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 20-36.
[8] LIN Ji, GAN Chuang, HAN Song. TSM: temporal shift module for efficient video understanding[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 7082-7092.
[9] FEICHTENHOFER C, FAN Haoqi, MALIK J, et al. SlowFast networks for video recognition[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6201-6210.
[10] YAN Sijie, XIONG Yuanjun, LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 7444-7452.
[11] DUAN Haodong, ZHAO Yue, CHEN Kai, et al. Revisiting skeleton-based action recognition[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 2959-2968.
[12] 田枫, 孙晓悦, 刘芳, 等. 基于图卷积的作业行为实时检测方法[J]. 计算机工程与设计, 2022, 43(10): 2944-2952.
TIAN Feng, SUN Xiaoyue, LIU Fang, et al. Real time detection method of work behavior based on graph convolution[J]. Computer engineering and design, 2022, 43(10): 2944-2952.
[13] 陆昱翔, 徐冠华, 唐波. 基于视觉Transformer时空自注意力的工人行为识别[J]. 浙江大学学报(工学版), 2023, 57(3): 446-454.
LU Yuxiang, XU Guanhua, TANG Bo. Worker behavior recognition based on temporal and spatial self-attention of vision Transformer[J]. Journal of Zhejiang university (engineering science edition), 2023, 57(3): 446-454.
[14] 饶天荣, 潘涛, 徐会军. 基于交叉注意力机制的煤矿井下不安全行为识别[J]. 工矿自动化, 2022, 48(10): 48-54.
RAO Tianrong, PAN Tao, XU Huijun. Unsafe action recognition in underground coal mine based on cross-attention mechanism[J]. Industry and mine automation, 2022, 48(10): 48-54.
[15] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2020-10-22)[2022-03-24]. http://arxiv.org/abs/2010.11929.
[16] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[17] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[18] KUEHNE H, JHUANG H, GARROTE E, et al. HMDB: a large video database for human motion recognition[C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 2556-2563.
[19] SOOMRO K, ZAMIR A R, SHAH M. UCF101: a dataset of 101 human actions classes from videos in the wild[EB/OL]. (2012-12-03)[2021-11-05]. http://arxiv.org/abs/1212.0402.
[20] KAY W, CARREIRA J, SIMONYAN K, et al. The kinetics human action video dataset[EB/OL]. (2017-05-19)[2021-11-05]. http://arxiv.org/abs/1705.06950.
[21] FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of eugenics, 1936, 7(2): 179-188.
[22] GAMMULLE H, DENMAN S, SRIDHARAN S, et al. Two stream LSTM: a deep fusion framework for human action recognition[C]//2017 IEEE Winter Conference on Applications of Computer Vision. Santa Rosa: IEEE, 2017: 177-186.
[23] JI Shuiwang, XU Wei, YANG Ming, et al. 3D convolutional neural networks for human action recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2013, 35(1): 221-231.
[24] XIE Saining, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5987-5995.
[25] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International journal of computer vision, 2020, 128(2): 336-359.
相似文献/References:
[1]梅雪,胡石,许松松,等.基于多尺度特征的双层隐马尔可夫模型及其在行为识别中的应用[J].智能系统学报,2012,7(6):512.
 MEI Xue,HU Shi,XU Songsong,et al.Multi scale feature based double layer HMM and its application in behavior recognition[J].CAAI Transactions on Intelligent Systems,2012,7():512.
[2]姬晓飞,谢旋,任艳.深度学习的双人交互行为识别与预测算法研究[J].智能系统学报,2020,15(3):484.[doi:10.11992/tis.201812029]
 JI Xiaofei,XIE Xuan,REN Yan.Human interaction recognition and prediction algorithm based on deep learning[J].CAAI Transactions on Intelligent Systems,2020,15():484.[doi:10.11992/tis.201812029]
[3]刘董经典,孟雪纯,张紫欣,等.一种基于2D时空信息提取的行为识别算法[J].智能系统学报,2020,15(5):900.[doi:10.11992/tis.201906054]
 LIU Dongjingdian,MENG Xuechun,ZHANG Zixin,et al.A behavioral recognition algorithm based on 2D spatiotemporal information extraction[J].CAAI Transactions on Intelligent Systems,2020,15():900.[doi:10.11992/tis.201906054]
[4]申天啸,韩怡园,韩冰,等.基于人类视觉皮层双通道模型的驾驶员眼动行为识别[J].智能系统学报,2022,17(1):41.[doi:10.11992/tis.202106051]
 SHEN Tianxiao,HAN Yiyuan,HAN Bing,et al.Recognition of driver’s eye movement based on the human visual cortex two-stream model[J].CAAI Transactions on Intelligent Systems,2022,17():41.[doi:10.11992/tis.202106051]
[5]闫河,李梦雪,张宇宁,等.面向表情识别的重影非对称残差注意力网络模型[J].智能系统学报,2023,18(2):333.[doi:10.11992/tis.202201003]
 YAN He,LI Mengxue,ZHANG Yuning,et al.A ghost asymmetric residual attention network model for facial expression recognition[J].CAAI Transactions on Intelligent Systems,2023,18():333.[doi:10.11992/tis.202201003]
[6]代金利,曹江涛,姬晓飞.交互关系超图卷积模型的双人交互行为识别[J].智能系统学报,2024,19(2):316.[doi:10.11992/tis.202208001]
 DAI Jinli,CAO Jiangtao,JI Xiaofei.Two-person interaction recognition based on the interactive relationship hypergraph convolution network model[J].CAAI Transactions on Intelligent Systems,2024,19():316.[doi:10.11992/tis.202208001]

备注/Memo

收稿日期:2023-9-11。
基金项目:黑龙江省自然科学基金项目(LH2021F004).
作者简介:田枫,教授,博士生导师,博士,计算机与信息技术学院院长,主要研究方向为智能油气地质、计算机视觉、智能数据分析处理。主持和参与国家自然科学基金项目、国家科技重大专项项目8项,专利授权16项,发表学术论文30余篇。E-mail:tianfeng1980@ 163.com;卫宁彬,硕士研究生,主要研究方向为计算机视觉、智能数据分析处理。E-mail:1205542631@qq.com;刘芳,副教授,博士,主要研究方向为智能油气地质、智慧教育、多媒体与现代教育技术、计算机视觉。获黑龙江省科技进步二等奖1项、大庆市科技进步二等奖1项,主持和参与国家自然科学基金项目、黑龙江省自然科学基金项目6项,发表学术论文20 余篇。E-mail:lfliufang1983@126.com。
通讯作者:刘芳. E-mail:lfliufang1983@126.com

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com