[1]田枫,卫宁彬,刘芳,等.基于时空-动作自适应融合网络的油田作业行为识别[J].智能系统学报,2024,19(6):1407-1418.[doi:10.11992/tis.202309021]
TIAN Feng,WEI Ningbin,LIU Fang,et al.Oilfield operation behavior recognition based on spatio-temporal and action adaptive fusion network[J].CAAI Transactions on Intelligent Systems,2024,19(6):1407-1418.[doi:10.11992/tis.202309021]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1407-1418
栏目:
学术论文—机器感知与模式识别
出版日期:
2024-12-05
- Title:
-
Oilfield operation behavior recognition based on spatio-temporal and action adaptive fusion network
- 作者:
-
田枫, 卫宁彬, 刘芳, 韩玉祥, 赵玲, 张思睿, 马贵宝
-
东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318
- Author(s):
-
TIAN Feng, WEI Ningbin, LIU Fang, HAN Yuxiang, ZHAO Ling, ZHANG Sirui, MA Guibao
-
School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China
-
- 关键词:
-
行为识别; ResNet50; 注意力机制; 油田作业; 特征融合; 时空注意力; 动作注意力; 复杂场景
- Keywords:
-
behavior recognition; ResNet50; attention mechanism; oilfield operation; feature fusion; spatio-temporal attention; action attention; complex scenes
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202309021
- 摘要:
-
为解决油田作业现场复杂环境对行为识别算法造成干扰而引起的误检、漏检问题,提出一种时空-动作自适应融合网络,用于油田作业现场的人员行为识别。构建的网络首先使用稀疏采样的策略对视频进行处理,再通过特征提取网络进行特征提取,其核心模块分别为时空注意力模块、动作强化模块和自适应特征融合模块。时空注意力模块完成特征的时空重要性再分配,建立不同帧之间的时间关联;动作强化模块完成背景的弱化、人体动作的强化,使模型聚焦于人体动作;特征融合模块在二者并行特征强化后进行自适应特征融合,最终通过全连接层和Softmax层来实现行为的分类。为验证所提网络的效果,分别在公共数据集和油田自制数据集上将所提模型与经典网络进行对比,UCF101数据集上的Top-1准确率相较于SlowOnly(SlowFast模型的Slow分支)和TSM(temporal shift module)分别提升了3.33%和1.61%,HMDB51数据集上的Top-1准确率相较于SlowOnly和TSM分别提升了8.56%和1.83%,在油田自制数据集上与TSN(temporal segment network)、TSM、SlowOnly进行对比,结果显示所提模型准确率得到大幅提升,验证了时空-动作自适应融合网络在油田作业现场环境下的有效性,更适用于油田作业环境下的行为识别任务。
- Abstract:
-
A spatiotemporal and action adaptive fusion network is proposed for personnel behavior recognition in oilfield operation sites to address the problems of false positives and negatives caused by the complex environment of oilfield operations interfering with behavior recognition algorithms. First, the videos are processed on the constructed network using a sparse sampling strategy, and features on the feature extraction network are then extracted. The core modules of the network include spatiotemporal attention, action reinforcement, and adaptive feature fusion modules. The spatiotemporal attention module redistributes the spatiotemporal importance of features, establishing temporal correlations between different frames. The action reinforcement module weakens the background and enhances human body movements, allowing the model to focus on human actions. The feature fusion module adaptively combines the parallel features after reinforcement. Finally, behavior classification is achieved through fully connected layers and a SoftMax layer. The model is compared with classic networks on public and self-built oilfield datasets to verify the effectiveness of the proposed network. The Top-1 accuracy on the UCF101 dataset shows a 3.33% improvement over SlowOnly, the Slow branch of the SlowFast model, and a 1.61% improvement over the temporal shift module (TSM). On the HMDB51 dataset, the Top-1 accuracy improves by 8.56% and 1.83% compared to SlowOnly and TSM, respectively. Additionally, when evaluated on the self-built oilfield dataset, the proposed model shows a notable improvement in accuracy over the temporal segment network, TSM, and SlowOnly. This result validates the effectiveness of the spatiotemporal and action adaptive fusion network in oilfield operations and confirms its suitability for behavior recognition tasks in such environments.
备注/Memo
收稿日期:2023-9-11。
基金项目:黑龙江省自然科学基金项目(LH2021F004).
作者简介:田枫,教授,博士生导师,博士,计算机与信息技术学院院长,主要研究方向为智能油气地质、计算机视觉、智能数据分析处理。主持和参与国家自然科学基金项目、国家科技重大专项项目8项,专利授权16项,发表学术论文30余篇。E-mail:tianfeng1980@ 163.com;卫宁彬,硕士研究生,主要研究方向为计算机视觉、智能数据分析处理。E-mail:1205542631@qq.com;刘芳,副教授,博士,主要研究方向为智能油气地质、智慧教育、多媒体与现代教育技术、计算机视觉。获黑龙江省科技进步二等奖1项、大庆市科技进步二等奖1项,主持和参与国家自然科学基金项目、黑龙江省自然科学基金项目6项,发表学术论文20 余篇。E-mail:lfliufang1983@126.com。
通讯作者:刘芳. E-mail:lfliufang1983@126.com
更新日期/Last Update:
2024-11-05