[1]李小菲,苟光磊,韩岩奇,等.多尺度知识引导局部增强的小样本细粒度图像分类方法[J].智能系统学报,2024,19(5):1157-1167.[doi:10.11992/tis.202309003]
 LI Xiaofei,GOU Guanglei,HAN Yanqi,et al.Multiscale knowledge-guided local enhancement method for few-shot fine-grained image classification[J].CAAI Transactions on Intelligent Systems,2024,19(5):1157-1167.[doi:10.11992/tis.202309003]
点击复制

多尺度知识引导局部增强的小样本细粒度图像分类方法

参考文献/References:
[1] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[2] 葛轶洲, 刘恒, 王言, 等. 小样本困境下的深度学习图像识别综述[J]. 软件学报, 2022, 33(1): 193-210.
GE Yizhou, LIU Heng, WANG Yan, et al. Survey on deep learning image recognition in dilemma of small samples[J]. Journal of software, 2022, 33(1): 193-210.
[3] WEN Qi, LI Shuang, HAN Bingfeng, et al. ZiGAN: fine-grained Chinese calligraphy font generation via a few-shot style transfer approach[C]//Proceedings of the 29th ACM International Conference on Multimedia. Virtual Event: ACM, 2021: 621-629.
[4] ZHANG Bo, CHEN Tao, WANG Bin, et al. Joint distribution alignment via adversarial learning for domain adaptive object detection[J]. IEEE transactions on multimedia, 2022, 24: 4102-4112.
[5] 杨祺, 孙俊. 融合多粒度特征的细粒度图像分类网络[J]. 小型微型计算机系统, 2023, 44(4): 818-824.
YANG Qi, SUN Jun. Multi-granularity feature fusion network for fine-grained visual classification[J]. Journal of Chinese computer systems, 2023, 44(4): 818-824.
[6] HE Ju, CHEN Jieneng, LIU Shuai, et al. TransFG: a transformer architecture for fine-grained recognition[C]//Proceedings of the AAAI conference on artificial intelligence. Vancouver: AAAI, 2022: 852-860.
[7] 许可凡. 基于注意力机制的细粒度图像分类技术的研究与应用[D]. 北京: 北京邮电大学, 2023.
XU Kefan. Research and application of fine-grained image classification technology based on attention mechanism[D]. Beijing: Beijing University of Posts and Telecommunications, 2023.
[8] 苗培昊. 基于度量学习的小样本细粒度图像识别研究[D]. 徐州: 中国矿业大学, 2022.
MIAO Peihao. Research on small sample fine-grained image recognition based on metric learning[D]. Xuzhou: China University of Mining and Technology, 2022.
[9] 周凯锐, 刘鑫, 景丽萍, 等. 概念驱动的小样本判别特征学习方法[J]. 智能系统学报, 2023, 18(1): 162-172.
ZHOU Kairui, LIU Xin, JING Liping, et al. Concept-driven discriminative feature learning for few-shot learning[J]. CAAI transactions on intelligent systems, 2023, 18(1): 162-172.
[10] YANG Shuo, LIU Lu, XU Min. Free lunch for few-shot learning: distribution calibration[EB/OL]. (2021-01-16)[2023-09-01]. https://arxiv.org/abs/2101.06395.
[11] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[J]. Advances in neural information processing systems, 2016: 3637-3645.
[12] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM. 2017: 4080-4090.
[13] SUNG F, YANG Yongxin, ZHANG Li, et al. Learning to compare: relation network for few-shot learning[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 1199-1208.
[14] LEE S, MOON W, HEO J P. Task discrepancy maximization for fine-grained few-shot classification[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5321-5330.
[15] HARIHARAN B, GIRSHICK R. Low-shot visual recognition by shrinking and hallucinating features[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 3037-3046.
[16] KOCH G, ZEMEL R, SALAKHUTDINOV R. Siamese neural networks for one-shot image recognition[C]//Proceedings of the 32 nd International Conference on Machine Learning-Volume 37. Lille: JMLR, 2015: 1-8.
[17] HOU Ruibing, CHANG Hong, MA Bingpeng, et al. Cross attention network for few-shot classification[EB/OL]. (2019-10-17)[2023-09-01]. https://arxiv.org/abs/1910.07677.
[18] LI Wenbin, WANG Lei, XU Jinglin, et al. Revisiting local descriptor based image-to-class measure for few-shot learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7253-7260.
[19] WU Ziyang, LI Yuwei, GUO Lihua, et al. PARN: position-aware relation networks for few-shot learning[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6658-6666.
[20] ABDELAZIZ M, ZHANG Zuping. Multi-scale kronecker-product relation networks for few-shot learning[J]. Multimedia tools and applications, 2022, 81(5): 6703-6722.
[21] XIE Lingxi, TIAN Qi, HONG Richang, et al. Hierarchical part matching for fine-grained visual categorization[C]//2013 IEEE International Conference on Computer Vision. Sydney: IEEE, 2013: 1641-1648.
[22] ZHANG Ning, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]//European Conference on Computer Vision. Cham: Springer, 2014: 834-849.
[23] ZHANG Yu, WEI Xiushen, WU Jianxin, et al. Weakly supervised fine-grained categorization with part-based image representation[J]. IEEE transactions on image processing, 2016, 25(4): 1713-1725.
[24] SONG Kaitao, WEI Xiushen, SHU Xiangbo, et al. Bi-modal progressive mask attention for fine-grained recognition[J]. IEEE transactions on image processing, 2020, 29: 7006-7018.
[25] TANG Hao, YUAN Chengcheng, LI Zechao, et al. Learning attention-guided pyramidal features for few-shot fine-grained recognition[J]. Pattern recognition, 2022, 130: 108792.
[26] WU Jijie, CHANG Dongliang, SAIN A, et al. Bi-directional feature reconstruction network for fine-grained few-shot image classification[C]//Proceedings of the AAAI conference on artificial intelligence. Washington: AAAI, 2023: 2821-2829.
[27] WEI Xiushen, WANG Peng, LIU Lingqiao, et al. Piecewise classifier mappings: learning fine-grained learners for novel categories with few examples[J]. IEEE transactions on image processing, 2019, 28(12): 6116-6125.
[28] RUAN Xiaoqian, LIN Guosheng, LONG Cheng, et al. Few-shot fine-grained classification with Spatial Attentive Comparison[J]. Knowledge-based systems, 2021, 218: 106840.
[29] XU Shulin, ZHANG Faen, WEI Xiushen, et al. Dual attention networks for few-shot fine-grained recognition[J]. Proceedings of the AAAI conference on artificial intelligence, 2022, 36(3): 2911-2919.
[30] MUNJAL B, FLABOREA A, AMIN S, et al. Query-guided networks for few-shot fine-grained classification and person search[J]. Pattern recognition, 2023, 133: 109049.
[31] 解耀华, 章为川, 任劼, 等. 基于自适应特征融合的小样本细粒度图像分类[J]. 计算机工程与应用, 2023, 59(3): 184-192.
XIE Yaohua, ZHANG Weichuan, REN Jie, et al. Adaptive feature fusion embedding network for few shot fine-grained image classification[J]. Computer engineering and applications, 2023, 59(3): 184-192.
[32] HUANG Huaxi, ZHANG Junjie, ZHANG Jian, et al. Low-rank pairwise alignment bilinear network for few-shot fine-grained image classification[J]. IEEE transactions on multimedia, 2020, 23: 1666-1680.
[33] ZHU Yaohui, LIU Chenlong, JIANG Shuqiang. Multi-attention meta learning for few-shot fine-grained image recognition[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama: ACM, 2020: 1090-1096.
[34] SHEN Yantao, XIAO Tong, LI Hongsheng, et al. End-to-end deep kronecker-product matching for person re-identification[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6886-6895.
[35] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[36] WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD birds-200-2011 dataset[R]. California: California Institute of Technology, 2011.
[37] KRAUSE J, STARK M, JIA Deng, et al. 3D object representations for fine-grained categorization[C]//2013 IEEE International Conference on Computer Vision Workshops. Sydney: IEEE, 2013: 554-561.
[38] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
[39] GARCIA V, BRUNA J. Few-shot learning with graph neural networks[EB/OL]. (2017-11-10)[2023-09-01]. https://arxiv.org/abs/1711.04043.
[40] WANG Xiaoru, MA Bing, YU Zhihong, et al. Multi-scale decision network with feature fusion and weighting for few-shot learning[J]. IEEE access, 2020, 8: 92172-92181.
[41] XUE Zhiyu, XIE Zhenshan, XING Zheng, et al. Relative position and map networks in few-shot learning for image classification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 4032-4036.
[42] XUE Z, DUAN Lixin, LI Wen, et al. Region comparison network for interpretable few-shot image classification[EB/OL]. (2020-09-08)[2023-09-01]. https://arxiv.org/abs/2009.03558.
相似文献/References:
[1]马岭,鲁越,蒋慧琴,等.基于小样本学习的LCD产品缺陷自动检测方法[J].智能系统学报,2020,15(3):560.[doi:10.11992/tis.201904020]
 MA Ling,LU Yue,JIANG Huiqin,et al.An automatic small sample learning-based detection method for LCD product defects[J].CAAI Transactions on Intelligent Systems,2020,15():560.[doi:10.11992/tis.201904020]
[2]郭茂祖,王偲佳,王鹏跃,等.基于卫星图的小样本街区品质评估[J].智能系统学报,2022,17(6):1254.[doi:10.11992/tis.202111049]
 GUO Maozu,WANG Sijia,WANG Pengyue,et al.Small sample block quality evaluation based on satellite images[J].CAAI Transactions on Intelligent Systems,2022,17():1254.[doi:10.11992/tis.202111049]
[3]周凯锐,刘鑫,景丽萍,等.概念驱动的小样本判别特征学习方法[J].智能系统学报,2023,18(1):162.[doi:10.11992/tis.202203061]
 ZHOU Kairui,LIU Xin,JING Liping,et al.Concept-driven discriminative feature learning for few-shot learning[J].CAAI Transactions on Intelligent Systems,2023,18():162.[doi:10.11992/tis.202203061]
[4]季友昌,袁伟伟,毛善斌,等.不平衡小样本基于局部域对抗适应网络的发动机振动预测模型[J].智能系统学报,2023,18(5):1005.[doi:10.11992/tis.202210030]
 JI Youchang,YUAN Weiwei,MAO Shanbin,et al.Partial domain adversarial adaptation networks for imbalanced small samples in aeroengine vibration prediction[J].CAAI Transactions on Intelligent Systems,2023,18():1005.[doi:10.11992/tis.202210030]

备注/Memo

收稿日期:2023-9-1。
基金项目:国家自然科学基金项目(62141201);重庆市教委科学技术研究项目(KJZD-M202201102).
作者简介:李小菲,硕士研究生,主要研究方向为计算机视觉、人工智能。E-mail:sofina612@163.com;苟光磊,副教授,主要研究方向为智能信息处理、人工智能。已主持重庆市科委基础科学与前沿技术研究项目、重庆市教委科学技术研究项目等科研项目5项,授权发明专利3项,发表学术论文20余篇,出版专著1部、教材2部。E-mail:ggl@cqut.edu.cn;韩岩奇,硕士研究生,中国计算机学会会员,主要研究方向为计算机视觉、小样本学习。E-mail:hanyanqi0408@163.com。
通讯作者:苟光磊. E-mail:ggl@cqut.edu.cn

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com