[1]白宇康,陈彦敏,樊小超,等.图神经网络和数值诱导正则化的数值推理方法[J].智能系统学报,2024,19(5):1268-1276.[doi:10.11992/tis.202308045]
BAI Yukang,CHEN Yanmin,FAN Xiaochao,et al.Numerical reasoning method for graph neural networks and numerically induced regularization[J].CAAI Transactions on Intelligent Systems,2024,19(5):1268-1276.[doi:10.11992/tis.202308045]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第5期
页码:
1268-1276
栏目:
学术论文—人工智能基础
出版日期:
2024-09-05
- Title:
-
Numerical reasoning method for graph neural networks and numerically induced regularization
- 作者:
-
白宇康1, 陈彦敏1,2, 樊小超1, 孙睿军2, 李炜杰3
-
1. 新疆师范大学 计算机科学技术学院, 新疆 乌鲁木齐 830054;
2. 中国科学技术大学 计算机科学与技术学院, 安徽 合肥 230026;
3. 新疆大学 软件学院, 新疆 乌鲁木齐 830046
- Author(s):
-
BAI Yukang1, CHEN Yanmin1,2, FAN Xiaochao1, SUN Ruijun2, LI Weijie3
-
1. College of Computer Science and Technology, Xinjiang Normal University, Urumqi 830054, China;
2. College of Computer Science and Technology, University of Science and Technology of China, Hefei 230026, China;
3. School of Software, Xinjiang University, Urumqi 830046, China
-
- 关键词:
-
数值推理; 机器阅读理解; 图神经网络; 异构图; 数值诱导正则化; 命名实体识别; 预训练模型; 抽取式
- Keywords:
-
numerical reasoning; machine reading comprehension; graph neural network; heterogeneous graph; numerical induced regularization; named entity recognition; pre-trained model; extractive
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202308045
- 文献标志码:
-
2024-08-28
- 摘要:
-
数值推理是机器阅读理解的一项关键能力,而数值推理任务中的数据类型多样,数值之间潜在的运算关系对数值推理任务有着更高的要求。为了进一步提升数值推理能力,一方面继承图神经网络方法并探索新的图结构,采用异构图神经网络结构进行数值推理,另一方面在预训练语言模型中引入数值诱导正则化方法,增强模型的数值理解能力。在DROP数据集上实验的结果表明,2种方法得到76.5%的精准匹配率,与基线模型对比以及对方法的消融实验表明,上述2种方法能够提升机器的数值推理能力。
- Abstract:
-
Numerical reasoning is a crucial capability in machine reading comprehension. However, the varying data types in this task introduce complexity. As a result, the identification of potential numerical arithmetic relationships has high requirements in this task. Two approaches are considered to improve numerical reasoning ability. First, the graph neural network method is incorporated to explore a heterogeneous graph-based neural network structure designed for numerical reasoning. Second, numerical-induced regularization is introduced into the pre-trained language model to enhance its numerical comprehension ability. Experimental results on the DROP dataset indicate that the two methods obtain an exact match rate of 76.5%. Furthermore, the comparison with the baseline model and the ablation experiments of the methods show that the two methods mentioned above can enhance the numerical reasoning ability of the machine.
备注/Memo
收稿日期:2023-8-31。
基金项目:新疆维吾尔自治区自然科学基金项目(2022D01A227);国家自然科学基金项目(62066044).
作者简介:白宇康,硕士研究生,主要研究方向为抽取式机器阅读理解。E-mail:1465215696@qq.com;陈彦敏,讲师,主要研究方向为数据挖掘和自然语言处理。参与国家自然科学基金项目2项,授权发明专利3项。E-mail:ymchen16@mail.ustc.edu.cn;樊小超,副教授,主要研究方向为自然语言处理、文本情感分析、隐式情感分析、生物文本知识挖掘、基于认知的幽默计算、反讽识别和多模态情感分析。主持国家自然科学基金项目1项,发表学术论文30余篇。E-mail:37769630@qq.com。
通讯作者:陈彦敏. E-mail:ymchen16@mail.ustc.edu.cn
更新日期/Last Update:
2024-09-05