[1]段文杰,邓金科,张顺香,等.基于多层次知识增强的方面级情感分析模型[J].智能系统学报,2024,19(5):1287-1297.[doi:10.11992/tis.202308044]
 DUAN Wenjie,DENG Jinke,ZHANG Shunxiang,et al.Aspect-based sentiment analysis model based on multilevel knowledge enhancement[J].CAAI Transactions on Intelligent Systems,2024,19(5):1287-1297.[doi:10.11992/tis.202308044]
点击复制

基于多层次知识增强的方面级情感分析模型

参考文献/References:
[1] 陈壮, 钱铁云, 李万理, 等. 低资源方面级情感分析研究综述[J]. 计算机学报, 2023, 46(7): 1445-1472.
CHEN Zhuang, QIAN Tieyun, LI Wanli, et al. Low-resource aspect-based sentiment analysis: a survey[J]. Chinese journal of computers, 2023, 46(7): 1445-1472.
[2] 张铭泉, 周辉, 曹锦纲. 基于注意力机制的双BERT有向情感文本分类研究[J]. 智能系统学报, 2022, 17(6): 1220-1227.
ZHANG Mingquan, ZHOU Hui, CAO Jingang. Dual BERT directed sentiment text classification based on attention mechanism[J]. CAAI transactions on intelligent systems, 2022, 17(6): 1220-1227.
[3] TANG Duyu, QIN Bing, FENG Xiaocheng, et al. Effective LSTMs for target-dependent sentiment classification[EB/OL]. (2015-12-03)[2023-08-30]. http://arxiv.org/abs/1512.01100
[4] MA Dehong, LI Sujian, ZHANG Xiaodong, et al. Interactive attention networks for aspect-level sentiment classification[EB/OL]. (2017-09-04)[2023-06-25]. https://arXiv.org/abs:1709.00893.
[5] 陈景景, 韩虎, 徐学锋. 面向多方面的双通道知识增强图卷积网络模型[J/OL]. 计算机工程与科学, 2023: 1-10. (2023-04-13)[2023-06-22]. https://kns.cnki.net/kcms/detail/43.1258.tp.20230411.1325.002.html.
CHEN Jingjing, HAN Hu, XU Xuefeng. Multi aspect oriented dual channel knowledge enhanced graph convolution network model[J/OL]. Computer engineering & science, 2023: 1-10. (2023-04-13)[2023-06-25]. https://kns.cnki.net/kcms/detail/43.1258.tp.20230411.1325.002.html.
[6] ZHANG Chen, LI Qiuchi, SONG Dawei. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 4568-4578.
[7] WANG Kai, SHEN Weizhou, YANG Yunyi, et al. Relational graph attention network for aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2020: 3229-3238.
[8] HOU Xiaochen, QI Peng, WANG Guangtao, et al. Graph ensemble learning over multiple dependency trees for aspect-level sentiment classification[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: Association for Computational Linguistics, 2021: 2884-2894.
[9] 李帅, 徐彬, 韩祎珂, 等. SS-GCN: 情感增强和句法增强的方面级情感分析模型[J]. 计算机科学, 2023, 50(3): 3-11.
LI Shuai, XU Bin, HAN Yike, et al. SS-GCN: aspect-based sentiment analysis model with affective enhancement and syntactic enhancement[J]. Computer science, 2023, 50(3): 3-11.
[10] CAMBRIA E, SPEER R, HAVASI C, et al. Senticnet: A publicly available semantic resource for opinion mining[C]//AAAI fall symposium. Arlington: AAAI, 2010: 14-18.
[11] CAMBRIA E, LI Yang, XING F Z, et al. SenticNet 6: ensemble application of symbolic and subsymbolic AI for sentiment analysis[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. Virtual Event: ACM, 2020: 105–114.
[12] LIANG Bin, SU Hang, GUI Lin, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-based systems, 2022, 235: 107643.
[13] CHEN Jindong, HU Yizhou, LIU Jingping, et al. Deep short text classification with knowledge powered attention[C]//Proceedings of the AAAI conference on artificial intelligence. Honolulu: AAAI, 2019, 33(1): 6252-6259.
[14] BIAN Ximo, FENG Chong, AHMAD A, et al. Targeted sentiment classification with knowledge powered attention network[C]//2019 IEEE 31st International Conference on Tools with Artificial Intelligence. New York: IEEE, 2019: 1073-1080.
[15] WANG Yequan, HUANG Minlie, ZHU Xiaoyan, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 606-615.
[16] CHEN Peng, SUN Zhongqian, BING Lidong, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 452-461.
[17] FAN Feifan, FENG Yansong, ZHAO Dongyan. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels: Association for Computational Linguistics, 2018: 3433-3442.
[18] SUN Kai, ZHANG Richong, MENSAH S, et al. Aspect-level sentiment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 5679-5688.
[19] XING F Z, PALLUCCHINI F, CAMBRIA E. Cognitive-inspired domain adaptation of sentiment lexicons[J]. Information processing and management: an international journal, 2019, 56(3): 554-564.
[20] MA Yukun, PENG Haiyun, KHAN T, et al. Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis[J]. Cognitive computation, 2018, 10(4): 639-650.
[21] YANG Qian, KADEER Z, GU Wenxia, et al. Affective knowledge augmented interactive graph convolutional network for chinese-oriented aspect-based sentiment analysis[J]. IEEE access, 2022, 10: 130686-130698.
[22] HU Linmei, YANG Tianchi, SHI Chuan, et al. Heterogeneous graph attention networks for semi-supervised short text classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong Kong: Association for Computational Linguistics, 2019: 4821-4830.
[23] JI Lei, WANG Yujing, SHI Botian, et al. Microsoft concept graph: mining semantic concepts for short text understanding[J]. Data intelligence, 2019, 1(3): 238-270.
[24] ZHU Zhenfang, ZHANG Dianyuan, LI Lin, et al. Knowledge-guided multi-granularity GCN for ABSA[J]. Information processing & management, 2023, 60(2): 103223.
[25] WANG Xiting, LIU Kunpeng, WANG Dongjie, et al. Multi-level recommendation reasoning over knowledge graphs with reinforcement learning[C]//Proceedings of the ACM Web Conference 2022. Lyon: ACM, 2022: 2098–2108.
[26] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: Association for Computational Linguistics, 2014: 1532-1543.
[27] ZHOU Peng, SHI Wei, TIAN Jun, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: Association for Computational Linguistics, 2016: 207-212.
[28] QI Peng, ZHANG Yuhao, ZHANG Yuhui, et al. Stanza: a python natural language processing toolkit for many human languages[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Stroudsburg: Association for Computational Linguistics, 2020: 101-108.
[29] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[30] DONG Li, WEI Furu, TAN Chuanqi, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Baltimore: Association for Computational Linguistics, 2014: 49-54.
[31] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). Dublin: Association for Computational Linguistics, 2014: 27-35.
[32] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2015 task 12: aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015). Denver: Association for Computational Linguistics, 2015: 486-495.
[33] PONTIKI M, GALANIS D, PAPAGEORGIOU H, et al. SemEval-2016 task 5: aspect based sentiment analysis[C]//Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). San Diego: Association for Computational Linguistics, 2016: 19-30.
[34] LI Xin, BING Lidong, LAM W, et al. Transformation networks for target-oriented sentiment classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne: Association for Computational Linguistics, 2018: 946-956.
[35] XU Guangtao, LIU Peiyu, ZHU Zhenfang, et al. Attention-enhanced graph convolutional networks for aspect-based sentiment classification with multi-head attention[J]. Applied sciences, 2021, 11(8): 3640.
[36] WU Sixing, XU Yuanfan, WU Fangzhao, et al. Aspect-based sentiment analysis via fusing multiple sources of textual knowledge[J]. Knowledge-based systems, 2019, 183: 104868.
[37] ZHANG Mi, QIAN Tieyun. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2020: 3540-3549.
[38] ZHOU Jie, HUANG J X, HU Q V, et al. SK-GCN: modeling Syntax and Knowledge via Graph Convolutional Network for aspect-level sentiment classification[J]. Knowledge-based systems, 2020, 205: 106292.
[39] CHEN Chenhua, TENG Zhiyang, ZHANG Yue. Inducing target-specific latent structures for aspect sentiment classification[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2020: 5596-5607.
[40] 王汝言, 陶中原, 赵容剑, 等. 多交互图卷积网络用于方面情感分析[J]. 电子与信息学报, 2022, 44(3): 1111-1118.
WANG Ruyan, TAO Zhongyuan, ZHAO Rongjian, et al. Multi-interaction graph convolutional networks for aspect-level sentiment analysis[J]. Journal of electronics & information technology, 2022, 44(3): 1111-1118.

备注/Memo

收稿日期:2023-8-30。
基金项目:国家自然科学基金面上项目(62076006);认知智能全国重点实验室开放课题(COGOS-2023HE02);安徽高校协同创新项目(GXXT-2021-008).
作者简介:段文杰,硕士研究生,主要研究方向为情感分析、信息抽取、数据挖掘。E-mail:2536521292@qq.com;邓金科,硕士研究生,主要研究方向为情感分析、数据挖掘。E-mail:917566821@qq.com;张顺香,教授,博士生导师,博士,主要研究方向为智能信息处理、情感计算、复杂网络分析。主持国家级科研项目2项、省部级科研项目6项,发表学术论文80余篇。E-mail:sxzhang@aust.edu.cn。
通讯作者:张顺香. E-mail:sxzhang@aust.edu.cn

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com