[1]朱俊,郑文栋,葛泉波,等.基于多帧重建的电阻抗动态成像的触摸跟踪[J].智能系统学报,2024,19(6):1458-1467.[doi:10.11992/tis.202308027]
 ZHU Jun,ZHENG Wendong,GE Quanbo,et al.Dynamic imaging of touch tracking based on multi-frame reconstruction in electrical impedance tomography[J].CAAI Transactions on Intelligent Systems,2024,19(6):1458-1467.[doi:10.11992/tis.202308027]
点击复制

基于多帧重建的电阻抗动态成像的触摸跟踪

参考文献/References:
[1] EROL A, BEBIS G, NICOLESCU M, et al. Vision-based hand pose estimation: a review[J]. Computer vision and image understanding, 2007, 108(1/2): 52-73.
[2] MITRA S, ACHARYA T. Gesture recognition: a survey[J]. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews), 2007, 37(3): 311-324.
[3] BERMAN S, STERN H. Sensors for gesture recognition systems[J]. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews), 2012, 42(3): 277-290.
[4] WU Chenning, SOLEIMANI M. In-water handwriting in multi-medium using electrical impedance imaging[J]. IOP SciNotes, 2020, 1(2): 025001.
[5] CHENG Jingyuan, SUNDHOLM M, ZHOU Bo, et al. Smart-surface: large scale textile pressure sensors arrays for activity recognition[J]. Pervasive and mobile computing, 2016, 30: 97-112.
[6] YOON S H, HUO Ke, ZHANG Yunbo, et al. iSoft: a customizable soft sensor with real-time continuous contact and stretching sensing[C]//Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology. Québec: ACM, 2017: 665–678.
[7] ZHANG Yang, LAPUT G, HARRISON C. Electrick: low-cost touch sensing using electric field tomography[C]//Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Denver: ACM, 2017: 1–14.
[8] ZHANG Yang, HARRISON C. Pulp nonfiction: low-cost touch tracking for paper[C]//Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Montreal: ACM, 2018: 1–11.
[9] PARK K, PARK H, LEE H, et al. An ERT-based robotic skin with sparsely distributed electrodes: structure, fabrication, and DNN-based signal processing[C]//2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 1617-1624.
[10] PARK H, PARK K, MO S, et al. Deep neural network based electrical impedance tomographic sensing methodology for large-area robotic tactile sensing[J]. IEEE transactions on robotics, 2021, 37(5): 1570-1583.
[11] ZHENG Enhao, LI Yuhua, ZHAO Zhiyu, et al. An electrical impedance tomography based interface for human–robot collaboration[J]. IEEE/ASME transactions on mechatronics, 2021, 26(5): 2373-2384.
[12] BARBER D C, BROWN B H. Applied potential tomography[J]. Journal of the British interplanetary society, 1989, 42(7): 391-393.
[13] VAUHKONEN M, VADáSZ D, KARJALAINEN P A, et al. Tikhonov regularization and prior information in electrical impedance tomography[J]. IEEE transactions on medical imaging, 1998, 17(2): 285-293.
[14] ADLER A, GUARDO R. Electrical impedance tomography: regularized imaging and contrast detection[J]. IEEE transactions on medical imaging, 1996, 15(2): 170-179.
[15] GOLDSTEIN T, OSHER S. The split bregman method for L1-regularized problems[J]. SIAM journal on imaging sciences, 2009, 2(2): 323-343.
[16] MA Gang, CHEN Haofeng, WANG Peng, et al. Multi-frame constrained block sparse Bayesian learning for flexible tactile sensing using electrical impedance tomography[J]. IEEE transactions on computational imaging, 2022, 8: 438-448.
[17] ADLER A, ARNOLD J H, BAYFORD R, et al. GREIT: a unified approach to 2D linear EIT reconstruction of lung images[J]. Physiological measurement, 2009, 30(6): S35-S55.
[18] ADLER A, LIONHEART W R B. Uses and abuses of EIDORS: an extensible software base for EIT[J]. Physiological measurement, 2006, 27(5): S25-S42.
[19] ZHENG Wendong, LIU Huaping, GUO Di, et al. Adaptive optimal electrical resistance tomography for large-area tactile sensing[C]//2023 IEEE International Conference on Robotics and Automation. London: IEEE, 2023: 10338-10344.
[20] CHEN Bo, ABASCAL J F P J, SOLEIMANI M. Extended joint sparsity reconstruction for spatial and temporal ERT imaging[J]. Sensors, 2018, 18(11): 4014.
[21] BOYLE A, ARISTOVICH K, ADLER A. Beneficial techniques for spatio-temporal imaging in electrical impedance tomography[J]. Physiological measurement, 2020, 41(6): 064003.
[22] CHENEY M, ISAACSON D, NEWELL J C, et al. NOSER: an algorithm for solving the inverse conductivity problem[J]. International journal of imaging systems and technology, 1990, 2(2): 66-75.
[23] ADLER A, DAI Tao, LIONHEART W R B. Temporal image reconstruction in electrical impedance tomography[J]. Physiological measurement, 2007, 28(7): S1-S11.
[24] GAGNON H, GRYCHTOL B, ADLER A. A comparison framework for temporal image reconstructions in electrical impedance tomography[J]. Physiological measurement, 2015, 36(6): 1093-1107.
[25] PARK K, KIM J. Neural-gas network-based optimal design method for ERT-based whole-body robotic skin[J]. IEEE transactions on robotics, 2022, 38(6): 3463-3478.
[26] PEDREGOSA F, VAROQUAUX G, GRAMFORT A, et al. Scikit-learn: machine learning in python[J]. Journal of machine learning research, 2011, 12: 2825-2830.

备注/Memo

收稿日期:2023-8-20。
基金项目:国家自然科学基金国际合作重点项目(62120106005);中国博士后科学基金项目(2022M711825).
作者简介:朱俊,硕士研究生,主要研究方向为机器人触觉感知。E-mail:675679019@qq.com;葛泉波,教授,博士生导师,主要研究方向为信息融合、自主无人系统、人机混合系统和机器视觉。主持国家自然科学基金青年基金项目1项。E-mail:geqb@nuist.edu.cn;刘华平,教授,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,主要研究方向为机器人感知、学习与控制、多模态信息融合。主持国家自然科学基金重点项目2项,发表学术论文100余篇。E-mail:hpliu@tsinghua.edu.cn。
通讯作者:刘华平. E-mail:hpliu@tsinghua.edu.cn

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com