[1]金怡凡,王海涛,贾伟.使用掌纹线对基于深度学习的掌纹识别进行数据增强[J].智能系统学报,2024,19(5):1178-1189.[doi:10.11992/tis.202308026]
JIN Yifan,WANG Haitao,JIA Wei.Using palmprint lines for data enhancement of palmprint recognition based on deep learning[J].CAAI Transactions on Intelligent Systems,2024,19(5):1178-1189.[doi:10.11992/tis.202308026]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第5期
页码:
1178-1189
栏目:
学术论文—机器感知与模式识别
出版日期:
2024-09-05
- Title:
-
Using palmprint lines for data enhancement of palmprint recognition based on deep learning
- 作者:
-
金怡凡, 王海涛, 贾伟
-
合肥工业大学 计算机与信息学院, 安徽 合肥 230009
- Author(s):
-
JIN Yifan, WANG Haitao, JIA Wei
-
School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009, China
-
- 关键词:
-
生物特征识别; 深度学习; 身份鉴别; Gabor滤波器; 掌纹识别; 掌线提取; 数据增强; 卷积神经网络
- Keywords:
-
biometric identification; deep learning; personal authentication; Gabor filter; palmprint recognition; palm line extraction; data enhancement; convolutional neural network
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202308026
- 文献标志码:
-
2024-08-30
- 摘要:
-
近年来掌纹识别技术受到越来越多的关注,然而在掌纹识别的过程中,复杂的应用场景为识别带来了困难。在基于深度学习的掌纹识别算法中,数据增强操作具有较大的作用。由于掌纹的独特性,其所包含的特征信息几乎全部处于掌纹线之中,因此传统的全局数据增强方法收效甚微。本文提出了一种基于掌纹线的数据增强方法。该方法首先基于传统的图像处理方法,提出了多阶段的掌纹线提取算法。然后,基于提取的掌纹线,设计了一种掌纹识别的数据增强方案。通过实验表明,应用该数据增强方式对掌纹图像进行增强之后,在4个广泛应用的深度学习模型上都取得了更好的效果。该数据增强方法简单高效,能够在实际应用中发挥作用。
- Abstract:
-
In recent years, palmprint recognition technology has attracted growing attention. However, complex application scenarios bring difficulties in the process of palmprint recognition. Data enhancement plays an important role in palmprint recognition algorithms based on deep learning. Owing to the uniqueness of palmprint, nearly all the feature data it contains lie within the palmprint lines. As a result, traditional global data enhancement methods have little effect in this case. In this study, a data enhancement method based on palmprint lines is proposed. In the method, a multi-stage palmprint line extraction algorithm is first proposed on the basis of the traditional image processing method. Subsequently, a data enhancement scheme on palmprint recognition is designed on the basis of the extracted palmprint lines. Experiments demonstrate that applying this data enhancement method to improve palmprint images has achieved better results than four widely used deep-learning models. The data enhancement method is simple and efficient and can play a role in actual applications.
备注/Memo
收稿日期:2023-8-19。
基金项目:国家自然科学基金项目(62076086).
作者简介:金怡凡,硕士研究生,主要研究方向为掌纹识别、掌纹掌静脉图像质量评估和质量增强。E-mail:2021111008@mail.hfut.edu.cn;王海涛,硕士研究生,主要研究方向为掌纹识别、计算机视觉和深度学习。E-mail:2020171079@mail.hfut.edu.cn;贾伟,教授,博士生导师,主要研究方向为人工智能、计算机视觉、图像处理、模式识别、生物特征识别。主持国家自然科学基金项目4项,获得授权发明专利7项,发表学术论文近百篇。E-mail:jiawei@hfut.edu.cn。
通讯作者:贾伟. E-mail:jiawei@hfut.edu.cn
更新日期/Last Update:
2024-09-05