[1]李旭,蔡彪,胡能兵.基于三元互信息的图对比学习方法研究[J].智能系统学报,2024,19(5):1257-1267.[doi:10.11992/tis.202308004]
 LI Xu,CAI Biao,HU Nengbing.Research on graph contrastive learning method based on ternary mutual information[J].CAAI Transactions on Intelligent Systems,2024,19(5):1257-1267.[doi:10.11992/tis.202308004]
点击复制

基于三元互信息的图对比学习方法研究

参考文献/References:
[1] CAI Biao, ZHU Xinping, QIN Yangxin. Parameters optimization of hybrid strategy recommendation based on particle swarm algorithm[J]. Expert systems with applications, 2021, 168: 114388.
[2] CAI Biao, YANG Xiaowang, HUANG Yusheng, et al. A triangular personalized recommendation algorithm for improving diversity[J]. Discrete dynamics in nature and society, 2018, 2018: 3162068.
[3] HU Fenyu, ZHU Yanqiao, WU Shu, et al. Hierarchical graph convolutional networks for semi-supervised node classification[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 4532–4539.
[4] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations. Toulon: ICLR, 2017: 1–14.
[5] VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]// Proceedings of the 6th International Conference on Learning Representations. Vancouver: ICLR, 2018: 1–12.
[6] LINSKER R. Self-organization in a perceptual network[J]. Computer, 1988, 21(3): 105–117.
[7] BACHMAN P, HJELM R D, BUCNWALTERuchwalter W. Learning representations by maximizing mutual information across views[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2019: 15535–15545.
[8] HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9726–9735.
[9] TIAN Yonglong, KRISHNAN D, ISOLA P. Contrastive multiview coding[C]//European Conference on Computer Vision. Cham: Springer, 2020: 776–794.
[10] COLLOBERT R, WESTON J. A unified architecture for natural language processing: deep neural networks with multitask learning[C]//Proceedings of the 25th International Conference on Machine Learning-ICML ’08. Helsinki: ACM, 2008: 160–167.
[11] MNIH A, KAVUKCUOGLU K. Learning word embeddings efficiently with noise-contrastive estimation[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2013: 2265–2273.
[12] VELIKOVI P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C]//Proceedings of the 7th International Conference on Learning Representations. New Orleans: ICLR, 2018: 1–17.
[13] HASSANI K, KHASAHMADI A H. Contrastive multi-view representation learning on graphs[C]//Proceedings of the 37th International Conference on Machine Learning. New York: Association for Computing Machinery, 2020: 4116–4126.
[14] ZHU Yanqiao, XU Yichen, YU Feng, et al. Deep graph contrastive representation learning[EB/OL]. (2020–06–07)[2023–08–03]. http://arxiv.org/abs/2006.04131.
[15] SONG Jingkuan, ZHANG Hanwang, LI Xiangpeng, et al. Self-supervised video hashing with hierarchical binary auto-encoder[J]. IEEE transactions on image processing: a publication of the IEEE signal processing society, 2018, 27(7): 3210–3221.
[16] XU Xing, LU Huimin, SONG Jingkuan, et al. Ternary adversarial networks with self-supervision for zero-shot cross-modal retrieval[J]. IEEE transactions on cybernetics, 2020, 50(6): 2400–2413.
[17] VAN DEN OORD A, LI Yazhe, VINYALS O. Representation learning with contrastive predictive coding[EB/OL]. (2018–07–10) [2023–08–03]. http://arxiv.org/abs/1807.03748.
[18] HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information estimation and maximization[EB/OL]. (2018–08–20)[2023–08–03]. http://arxiv.org/abs/1808.06670.
[19] CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 1597–1607.
[20] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent: A new approach to self-supervised learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2020: 21271–21284.
[21] ZBONTAR J, JING L, MISRA I, et al. Barlow Twins: self-supervised learning via redundancy reduction[C]//Proceedings of the 38th International Conference on Machine Learning. New York: Association for Computing Machinery, 2021: 1231012320.
[22] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701–710.
[23] GROVER A, LESKOVEC J. Node2Vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 855–864.
[24] QIU Jiezhong, DONG Yuxiao, MA Hao, et al. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York: Association for Computing Machinery, 2018: 459–467.
[25] HAMILTON W L, YING R, LESKOVC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2017: 1025–1035.
[26] PENG Zhen, HUANG Wenbing, LUO Minnan, et al. Graph representation learning via graphical mutual information maximization[C]//Proceedings of The Web Conference 2020. New York: Association for Computing Machinery, 2020: 259–270.
[27] ZHU Yanqiao, XU Yichen, YU Feng, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of the Web Conference 2021. New York: Association for Computing Machinery, 2021: 2069–2080.
[28] THAKOOR S, TALLEC C, AZAR M G, et al. Large-scale representation learning on graphs via bootstrapping[EB/OL]. (2021–02–12)[2023–08–03]. http://arxiv.org/abs/2102.06514.
[29] BIELAK P, KAJDANOWICZ T, CHAWLA N V. Graph barlow twins: a self-supervised representation learning framework for graphs[EB/OL]. (2021–06–04)[2023–08–03]. https://arxiv.org/abs/2106.02466.
[30] ZHANG Yifei, ZHU Hao, SONG Zixing, et al. COSTA: covariance-preserving feature augmentation for graph contrastive learning[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2022: 2524–2534.
[31] KINGMA D, BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3rd International Conference on Learning Representations. San Diego: ICLR, 2015: 1–15.
[32] CLEVERT D A, UNTERTHINER T, HOCHREITER S. Fast and accurate deep network learning by exponential linear units (ELUs)[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan: ICLR, 2016: 1–14.
[33] KIPF T N, WELLING M. Variational graph auto-encoders[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: Association for Computing Machinery, 2021: 2827–2831.
[34] MO Yujie, PENG Liang, XU Jie, et al. Simple unsupervised graph representation learning[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2022, 36(7): 7797–7805.
相似文献/References:
[1]陈伟卿,李冠华,欧宗瑛,等.基于灰度互信息和梯度相似性的医学图像配准及其加速处理[J].智能系统学报,2008,3(6):498.
 CHEN Wei-qing,LI Guan-hua,OU Zong-ying,et al.Medical image registration based on grey mutual information and gradient similarity with an accelerated processing method[J].CAAI Transactions on Intelligent Systems,2008,3():498.
[2]李冰寒,高晓利,刘三阳,等.利用互信息学习贝叶斯网络结构[J].智能系统学报,2011,6(1):68.
 LI-Binghan,GAO-Xiaoli,LIU-Sanyang,et al.Learning Bayesian network structures based on mutual information[J].CAAI Transactions on Intelligent Systems,2011,6():68.
[3]张昭昭,乔俊飞,杨刚.自适应前馈神经网络结构优化设计[J].智能系统学报,2011,6(4):312.
 ZHANG Zhaozhao,QIAO Junfei,YANG Gang.An adaptive algorithm for designingoptimal feedforward neural network architecture[J].CAAI Transactions on Intelligent Systems,2011,6():312.
[4]宋晓丽,刘冀伟,张晓星.分布式视频编码的关键帧提取算法[J].智能系统学报,2011,6(6):539.
 SONG Xiaoli,LIU Jiwei,ZHANG Xiaoxing.A key frame selection algorithm for distributed video coding[J].CAAI Transactions on Intelligent Systems,2011,6():539.
[5]周红标,乔俊飞.基于高维k-近邻互信息的特征选择方法[J].智能系统学报,2017,12(5):595.[doi:10.11992/tis.201609020]
 ZHOU Hongbiao,QIAO Junfei.Feature selection method based on high dimensional k-nearest neighbors mutual information[J].CAAI Transactions on Intelligent Systems,2017,12():595.[doi:10.11992/tis.201609020]
[6]王贺彬,葛泉波,刘华平,等.面向观测融合和吸引因子的多机器人主动SLAM[J].智能系统学报,2021,16(2):371.[doi:10.11992/tis.202006019]
 WANG Hebin,GE Quanbo,LIU Huaping,et al.Multi-robot active SLAM for observation fusion and attractor[J].CAAI Transactions on Intelligent Systems,2021,16():371.[doi:10.11992/tis.202006019]
[7]郑静,熊伟丽.基于互信息的多块k近邻故障监测及诊断[J].智能系统学报,2021,16(4):717.[doi:10.11992/tis.202007035]
 ZHENG Jing,XIONG Weili.Multiblock k-nearest neighbor fault monitoring and diagnosis based on mutual information[J].CAAI Transactions on Intelligent Systems,2021,16():717.[doi:10.11992/tis.202007035]
[8]曲海成,王宇萍,谢梦婷,等.结合亮度感知与密集卷积的红外与可见光图像融合[J].智能系统学报,2022,17(3):643.[doi:10.11992/tis.202104004]
 QU Haicheng,WANG Yuping,XIE Mengting,et al.Infrared and visible image fusion combined with brightness perception and dense convolution[J].CAAI Transactions on Intelligent Systems,2022,17():643.[doi:10.11992/tis.202104004]
[9]张智慧,杨燕,张熠玲.面向不完整多视图聚类的深度互信息最大化方法[J].智能系统学报,2023,18(1):12.[doi:10.11992/tis.202203051]
 ZHANG Zhihui,YANG Yan,ZHANG Yiling.Deep mutual information maximization method for incomplete multi-view clustering[J].CAAI Transactions on Intelligent Systems,2023,18():12.[doi:10.11992/tis.202203051]
[10]卢毅,陈亚冉,赵冬斌,等.关键点图对比图像分类方法[J].智能系统学报,2023,18(1):36.[doi:10.11992/tis.202112001]
 LU Yi,CHEN Yaran,ZHAO Dongbin,et al.Keypoint-based graph contrastive neural network for image classification[J].CAAI Transactions on Intelligent Systems,2023,18():36.[doi:10.11992/tis.202112001]

备注/Memo

收稿日期:2023-8-3。
基金项目:国家自然科学基金项目(61802034).
作者简介:李旭,硕士研究生,主要研究方向为图神经网络、图对比学习。E-mail:905376942@qq.com;蔡彪,教授,博士,主要研究方向为数据挖掘、图神经网络、图像分割。负责四川省科技厅项目1项、教育部重点实验室基金项目1项;作为第一完成人主持国家自然基金项目和四川省科技攻关项目各1项。以第一作者和通信作者发表学术论文20余篇。 E-mail:caibiao@cdut.edu.cn;胡能兵,硕士研究生,主要研究方向为图神经网络、图对比学习。E-mail:1575843213@qq.com
通讯作者:蔡彪. E-mail:caibiao@cdut.edu.cn

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com