[1]李旭,蔡彪,胡能兵.基于三元互信息的图对比学习方法研究[J].智能系统学报,2024,19(5):1257-1267.[doi:10.11992/tis.202308004]
LI Xu,CAI Biao,HU Nengbing.Research on graph contrastive learning method based on ternary mutual information[J].CAAI Transactions on Intelligent Systems,2024,19(5):1257-1267.[doi:10.11992/tis.202308004]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第5期
页码:
1257-1267
栏目:
学术论文—人工智能基础
出版日期:
2024-09-05
- Title:
-
Research on graph contrastive learning method based on ternary mutual information
- 作者:
-
李旭, 蔡彪, 胡能兵
-
成都理工大学 计算机与网络安全学院, 四川 成都 610059
- Author(s):
-
LI Xu, CAI Biao, HU Nengbing
-
College of Computer Science and Cyber Security, Chengdu University of Technology, Chengdu 610059, China
-
- 关键词:
-
图对比学习; 互信息; 图神经网络; 无监督学习; 对比学习; 表示学习; 节点分类; 深度学习
- Keywords:
-
graph contrastive learning; mutual information; graph neural network; unsupervised machine learning; contrastive learning; representation learning; node classification; deep learning
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.202308004
- 文献标志码:
-
2024-03-21
- 摘要:
-
最近,图对比学习成为一种成功的无监督图表示学习方法,大多数方法都基于最大化互信息原则,通过数据增强来得到两个视图,并最大化两个视图的互信息。然而,两个视图的互信息可能包含不利于下游任务的信息。为了克服这些缺陷,提出基于三元互信息的图对比学习框架。该框架首先对输入图进行随机数据增强来生成两个视图,使用权重共享的编码器获得两个节点表示矩阵,随后使用共享权重解码器解码两个视图的节点表示。通过对比损失函数分别计算视图之间和视图与原图之间的损失,以最大化视图之间和视图与原图之间的互信息。实验结果表明,该方法在节点分类准确性方面的表现优于基线方法,甚至超过部分监督学习方法,验证了框架的有效性。
- Abstract:
-
Recently, graph contrastive learning has emerged as a successful method for unsupervised graph representation learning. Most existing methods are based on the principle of maximizing mutual information by obtaining two views through data augmentation and maximizing their mutual information. However, the mutual information of these two views may include information that is not beneficial for downstream tasks. To overcome these shortcomings, we propose a graph contrastive learning framework based on ternary mutual information. The framework first performs stochastic data augmentation on the input graph to generate two views. A weight-shared encoder is then used to obtain two node representation matrices. Subsequently, a shared weight decoder decodes the node representations of the two views. The loss between views, and between views and the original graph, is calculated separately using a contrast loss function. This approach maximizes the mutual information between the views, as well as between views and the original graph. The experimental results show that the method outperforms the baseline method in terms of node classification accuracy. Moreover, it even outperforms some supervised machine learning methods, verifying the effectiveness of the framework.
备注/Memo
收稿日期:2023-8-3。
基金项目:国家自然科学基金项目(61802034).
作者简介:李旭,硕士研究生,主要研究方向为图神经网络、图对比学习。E-mail:905376942@qq.com;蔡彪,教授,博士,主要研究方向为数据挖掘、图神经网络、图像分割。负责四川省科技厅项目1项、教育部重点实验室基金项目1项;作为第一完成人主持国家自然基金项目和四川省科技攻关项目各1项。以第一作者和通信作者发表学术论文20余篇。 E-mail:caibiao@cdut.edu.cn;胡能兵,硕士研究生,主要研究方向为图神经网络、图对比学习。E-mail:1575843213@qq.com
通讯作者:蔡彪. E-mail:caibiao@cdut.edu.cn
更新日期/Last Update:
2024-09-05