[1]王闪闪,巩长庆,秦华锋,等.基于深度学习的K近邻图迭代静脉识别算法研究[J].智能系统学报,2024,19(5):1149-1156.[doi:10.11992/tis.202307009]
 WANG Shanshan,GONG Changqing,QIN Huafeng,et al.Vein recognition algorithm combining K-nearest neighbor and graph iterative based on deep learning[J].CAAI Transactions on Intelligent Systems,2024,19(5):1149-1156.[doi:10.11992/tis.202307009]
点击复制

基于深度学习的K近邻图迭代静脉识别算法研究

参考文献/References:
[1] 谭振林, 刘子良, 黄蔼权, 等. 掌静脉识别的深度学习方法综述[J]. 计算机工程与应用, 2024, 60(6): 55-67.
TAN Zhenlin, LIU Ziliang, HUANG Aiquan, et al. Review of deep learning methods for palm vein recognition[J]. Computer engineering and applications, 2024, 60(6): 55-67.
[2] 赵程, 马彦波, 景荣, 等. 基于面部识别和掌静脉识别的AFC支付技术研究[J]. 智能城市, 2023, 9(5): 13-17.
ZHAO Cheng, MA Yanbo, JING Rong, et al. Research on AFC payment technology based on facial recognition and palmar vein recognition[J]. Intelligent city, 2023, 9(5): 13-17.
[3] WU Zhendong, TIAN Longwei, LI Ping, et al. Generating stable biometric keys for flexible cloud computing authentication using finger vein[J]. Information sciences, 2018, 433: 431-447.
[4] KONO M. A new method for the identification of individuals by using of vein pattern matching of a finger[C]//Proc Fifth Symposium on Pattern Measurement. Yamaguchi: CiNii, 2000: 9-12.
[5] 刘伟业, 鲁慧民, 李玉鹏, 等. 指静脉识别技术研究综述[J]. 计算机科学, 2022, 49(S1): 1-11.
LIU Weiye, LU Huimin, LI Yupeng, et al. Survey on finger vein recognition research[J]. Computer science, 2022, 49(S1): 1-11.
[6] QIN Huafeng, LAN Qin, YU Chengbo. Region growth–based feature extraction method for finger-vein recognition[J]. Optical engineering, 2011, 50(5): 057208.
[7] SONG W, KIM T, KIM H C, et al. A finger-vein verification system using mean curvature[J]. Pattern recognition letters, 2011, 32(11): 1541-1547.
[8] MIURA N, NAGASAKA A, MIYATAKE T. Extraction of finger-vein patterns using maximum curvature points in image profiles[J]. IEICE - transactions on information and systems, 2007, E90-D(8): 1185-1194.
[9] QIU Xinwei, KANG Wenxiong, TIAN Senping, et al. Finger vein presentation attack detection using total variation decomposition[J]. IEEE transactions on information forensics and security, 2018, 13(2): 465-477.
[10] 杨如民, 许琳英, 余成波. 基于Hessian矩阵和Gabor滤波的手指静脉特征提取[J]. 兵器装备工程学报, 2019, 40(3): 103-107, 111.
YANG Rumin, XU Linying, YU Chengbo. Finger vein feature extraction based on Hessian matrix and Gabor filtering[J]. Journal of ordnance equipment engineering, 2019, 40(3): 103-107, 111.
[11] LEE E C, LEE H C, PARK K R. Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction[J]. International journal of imaging systems and technology, 2009, 19(3): 179-186.
[12] GU Gaojie, BAI Peirui, LI Hui, et al. Dorsal hand vein recognition based on transfer learning with fusion of LBP feature[C]//Biometric Recognition. Cham: Springer, 2021: 221-230.
[13] QIN Huafeng, EL YACOUBI M A, LIN Jihai, et al. An iterative deep neural network for hand-vein verification[J]. IEEE access, 2019, 7: 34823-34837.
[14] 胡娜, 马慧, 湛涛. 融合LBP纹理特征与B2DPCA技术的手指静脉识别方法[J]. 智能系统学报, 2019, 14(3): 533-540.
HU Na, MA Hui, ZHAN Tao. Finger vein recognition method combining LBP texture feature and B2DPCA technology[J]. CAAI transactions on intelligent systems, 2019, 14(3): 533-540.
[15] HOU Borui, YAN Ruqiang. ArcVein-arccosine center loss for finger vein verification[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 5007411.
[16] YANG Wenming, HUI Changqing, CHEN Zhiquan, et al. FV-GAN: finger vein representation using generative adversarial networks[J]. IEEE transactions on information forensics and security, 2019, 14(9): 2512-2524.
[17] WANG Wenhai, XIE Enze, LI Xiang, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 548-558.
[18] KHANDELWAL U, LEVY O, JURAFSKY D, et al. Generalization through memorization: nearest neighbor language models[EB/OL]. (2019-11-01)[2023-07-12]. https://arxiv.org/abs/1911.00172.
[19] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[20] QIN Huafeng, EL-YACOUBI M A, LI Yantao, et al. Multi-scale and multi-direction GAN for CNN-based single palm-vein identification[J]. IEEE transactions on information forensics and security, 2021, 16: 2652-2666.
[21] YANG Weili, LUO Wei, KANG Wenxiong, et al. FVRAS-net: an embedded finger-vein recognition and AntiSpoofing system using a unified CNN[J]. IEEE transactions on instrumentation and measurement, 2020, 69(11): 8690-8701.
[22] 袁臣虎, 刘铁根, 李秀艳. 基于kNN-SVM的手背静脉虹膜和指纹融合身份识别[J]. 光电工程, 2013, 40(4): 101-105.
YUAN Chenhu, LIU Tiegen, LI Xiuyan. Identification algorithm for fusion of hand vein iris and fingerprint based on kNN-SVM[J]. Opto-electronic engineering, 2013, 40(4): 101-105.
[23] 刘辉玲, 陶洁, 邱磊. 基于Python的One-hot编码的实现[J]. 武汉船舶职业技术学院学报, 2021, 20(3): 136-139.
LIU Huiling, TAO Jie, QIU Lei. Implementation of one-hot encoding based on python[J]. Journal of Wuhan Institute of Shipbuilding Technology, 2021, 20(3): 136-139.
[24] ZHANG Lin, CHENG Zaixi, SHEN Ying, et al. Palmprint and palmvein recognition based on DCNN and a new large-scale contactless palmvein dataset[J]. Symmetry, 2018, 10(4): 78.
[25] SHEN Jiaquan, LIU Ningzhong, XU Chenglu, et al. Finger vein recognition algorithm based on lightweight deep convolutional neural network[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 1-13.
[26] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
相似文献/References:
[1]颜廷秦,周昌雄.二维EMD分解提高PCA掌纹识别率[J].智能系统学报,2013,8(4):377.[doi:10.3969/j.issn.1673-4785.201211002]
 YAN Tingqin,ZHOU Changxiong.The research of improving PCA recognition rate of palmprints with BEMD[J].CAAI Transactions on Intelligent Systems,2013,8():377.[doi:10.3969/j.issn.1673-4785.201211002]
[2]陈阳,覃鸿,李卫军,等.仿生模式识别技术研究与应用进展[J].智能系统学报,2016,11(1):1.[doi:10.11992/tis.201506011]
 CHEN Yang,QIN Hong,LI Weijun,et al.Progress in research and application of biomimetic pattern recognition technology[J].CAAI Transactions on Intelligent Systems,2016,11():1.[doi:10.11992/tis.201506011]
[3]马晓,张番栋,封举富.基于深度学习特征的稀疏表示的人脸识别方法[J].智能系统学报,2016,11(3):279.[doi:10.11992/tis.201603026]
 MA Xiao,ZHANG Fandong,FENG Jufu.Sparse representation via deep learning features based face recognition method[J].CAAI Transactions on Intelligent Systems,2016,11():279.[doi:10.11992/tis.201603026]
[4]潘在宇,徐家梦,王军,等.基于模态信息度评估策略的掌纹掌静脉特征识别方法[J].智能系统学报,2024,19(5):1136.[doi:10.11992/tis.202310002]
 PAN Zaiyu,XU Jiameng,WANG Jun,et al.Palmprint and palm vein recognition method based on modal information evaluation strategy[J].CAAI Transactions on Intelligent Systems,2024,19():1136.[doi:10.11992/tis.202310002]
[5]金怡凡,王海涛,贾伟.使用掌纹线对基于深度学习的掌纹识别进行数据增强[J].智能系统学报,2024,19(5):1178.[doi:10.11992/tis.202308026]
 JIN Yifan,WANG Haitao,JIA Wei.Using palmprint lines for data enhancement of palmprint recognition based on deep learning[J].CAAI Transactions on Intelligent Systems,2024,19():1178.[doi:10.11992/tis.202308026]
[6]林孙旗,徐家梦,郑瑜杰,等.面向掌纹掌静脉识别网络轻量化的非对称双模态融合方法[J].智能系统学报,2024,19(5):1190.[doi:10.11992/tis.202212031]
 LIN Sunqi,XU Jiameng,ZHENG Yujie,et al.An asymmetric bimodal fusion method for lightweight palm print and palm vein recognition network[J].CAAI Transactions on Intelligent Systems,2024,19():1190.[doi:10.11992/tis.202212031]

备注/Memo

收稿日期:2023-7-12。
基金项目:国家自然科学基金项目(61976030);重庆市高校创新研究群体项目(CXQT21034);河南省科技厅科技攻关项目(222102210301);重庆市研究生科研创新项目(CYS23565).
作者简介:王闪闪,硕士研究生,主要研究方向为生物特征识别。E-mail:wangshanexpression@163.com;巩长庆,硕士研究生,主要研究方向为生物特征识别。E-mail:gongchangqing@ctbu.edu.cn;秦华锋,教授,主要研究方向为生物特征识别、大数据的分析与处理。主持国家自然科学基金项目、重庆市青年人才培养项目等10余项,授权发明专利10余项。发表学术论文40余篇。E-mail:qinhaufengfeng@163.com。
通讯作者:秦华锋. E-mail:qinhaufengfeng@163.com

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com