[1]王闪闪,巩长庆,秦华锋,等.基于深度学习的K近邻图迭代静脉识别算法研究[J].智能系统学报,2024,19(5):1149-1156.[doi:10.11992/tis.202307009]
WANG Shanshan,GONG Changqing,QIN Huafeng,et al.Vein recognition algorithm combining K-nearest neighbor and graph iterative based on deep learning[J].CAAI Transactions on Intelligent Systems,2024,19(5):1149-1156.[doi:10.11992/tis.202307009]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第5期
页码:
1149-1156
栏目:
学术论文—机器感知与模式识别
出版日期:
2024-09-05
- Title:
-
Vein recognition algorithm combining K-nearest neighbor and graph iterative based on deep learning
- 作者:
-
王闪闪1, 巩长庆1, 秦华锋1, 王军2, 李艳涛3, 杨数强4
-
1. 重庆工商大学 人工智能学院, 重庆 400067;
2. 中国矿业大学 信息与控制工程学院, 江苏 徐州 221116;
3. 重庆大学 计算机学院, 重庆 400044;
4. 洛阳师范学院 物理与电子信息学院, 河南 洛阳 471934
- Author(s):
-
WANG Shanshan1, GONG Changqing1, QIN Huafeng1, WANG Jun2, LI Yantao3, YANG Shuqiang4
-
1. College of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China;
2. Information and Control Engineering Institute, China University of Mining and Technology, Xuzhou 221116, China;
3. School of Computing, Chongqing University, Chongqing 400044, China;
4. School of Physics and Electronic Information, Luoyang Normal University, Luoyang 471934, China
-
- 关键词:
-
生物特征识别; 掌静脉识别; 图像处理; 深度学习; K近邻算法; 卷积神经网络; 图迭代算法; 图神经网络
- Keywords:
-
biometric recognition; palm vein recognition; image processing; deep learning; KNN algorithm; convolutional neural network; graph iterative algorithm; graph neural network
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.202307009
- 文献标志码:
-
2024-08-28
- 摘要:
-
深度学习在计算机视觉中具有强大的特征表达能力,近年来广泛应用于静脉特征的提取与识别。通常,基于深度学习的静脉识别模型在训练阶段,每次仅输入1幅图像及其对应的标签,学习图像与标签之间的映射关系,然而,这种每次只处理单幅图像的方法,难以捕捉不同类别多幅静脉图像之间的关系。为了解决该问题,提出一种基于深度学习的K近邻图迭代静脉识别算法。用较优的深度学习模型提取掌静脉图像特征;利用K近邻算法通过特征距离在训练集中选出最近的K幅图像及其标签,通过这些特征向量生成标签传播矩阵和标签矩阵;利用图迭代算法预测待分类图像的标签,完成分类。在香港理工大学和同济大学提供的掌静脉数据集上进行实验,最高识别精度分别为99.67%和92.72%。
- Abstract:
-
In recent years, deep learning has been widely applied in the extraction and recognition of vein features due to its excellent performance in computer vision. Usually, vein recognition models based on deep learning learn the mapping between a single input image and its label. This approach barely captures the connections between multiple vein images from different categories. To solve this problem, this study introduces a deep learning-based K-nearest neighbor iterative vein recognition algorithm. First, the algorithm extracts features from palm vein images by using advanced deep learning models. Then, it calculates the distances between an image to be classified and training images by using the K-nearest neighbor algorithm, which determines the K most similar images and their labels. A label propagation matrix and a label matrix are created from these feature vectors. Finally, a graph iteration algorithm is used to predict the classifications. Tests are conducted on palm vein datasets provided by Hong Kong Polytechnic University and Tongji University. Recognition accuracies of 99.67% and 92.72% are obtained for the two datasets, respectively.
备注/Memo
收稿日期:2023-7-12。
基金项目:国家自然科学基金项目(61976030);重庆市高校创新研究群体项目(CXQT21034);河南省科技厅科技攻关项目(222102210301);重庆市研究生科研创新项目(CYS23565).
作者简介:王闪闪,硕士研究生,主要研究方向为生物特征识别。E-mail:wangshanexpression@163.com;巩长庆,硕士研究生,主要研究方向为生物特征识别。E-mail:gongchangqing@ctbu.edu.cn;秦华锋,教授,主要研究方向为生物特征识别、大数据的分析与处理。主持国家自然科学基金项目、重庆市青年人才培养项目等10余项,授权发明专利10余项。发表学术论文40余篇。E-mail:qinhaufengfeng@163.com。
通讯作者:秦华锋. E-mail:qinhaufengfeng@163.com
更新日期/Last Update:
2024-09-05