[1]卢一凡,李煊鹏,薛启凡.面向未知域场景的车辆轨迹预测模型[J].智能系统学报,2024,19(5):1238-1247.[doi:10.11992/tis.202306046]
LU Yifan,LI Xuanpeng,XUE Qifan.Vehicle trajectory prediction model for unseen domain scenarios[J].CAAI Transactions on Intelligent Systems,2024,19(5):1238-1247.[doi:10.11992/tis.202306046]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第5期
页码:
1238-1247
栏目:
学术论文—智能系统
出版日期:
2024-09-05
- Title:
-
Vehicle trajectory prediction model for unseen domain scenarios
- 作者:
-
卢一凡, 李煊鹏, 薛启凡
-
东南大学 仪器科学与工程学院, 江苏 南京 210096
- Author(s):
-
LU Yifan, LI Xuanpeng, XUE Qifan
-
School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
-
- 关键词:
-
轨迹预测; 域泛化; 不变风险最小化; 条件变分自编码器; 端点生成; 矢量地图; 场景上下文; 时序网络
- Keywords:
-
track prediction; domain generalization; invariant risk minimization; conditional variational auto encoder; endpoint generating; vector map; scene context; time-series networks
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202306046
- 文献标志码:
-
2024-08-28
- 摘要:
-
自动驾驶技术随着科技革新迎来蓬勃发展,轨迹预测已成为智能汽车软件系统不可或缺的关键组成部分。为了解决传统车辆轨迹预测模型中存在的泛化能力不足的问题,提出一种基于泛化终点预测和地图场景的车辆轨迹预测方法。该方法采用基于不变风险最小化的条件变分自编码器生成轨迹终点,并结合时序网络编码的地图场景特征,提升了模型预测未知域数据的准确率。在交互式道路场景数据集INTERACTION上的实验结果证明该模型具有良好的泛化性能。本方法与效果最好的方法REx相比1 、2 、3 s处的mADE值(越小越好)分别下降0%、36.59%、50.68%,在未知测试域的预测轨迹准确度得到显著提升。
- Abstract:
-
With the rapid development of autonomous driving technology, trajectory prediction has become an essential component of smart car software systems. To address the limitations in the generalization of traditional vehicle trajectory prediction models, this study proposes a vehicle trajectory prediction method based on generalized endpoint prediction and vector maps. This method employs a conditional variational autoencoder based on invariant risk minimization to generate trajectory endpoints. The accuracy of the model in predicting unseen domains is improved by integrating map scene features encoded by a time-series network. Experiments were conducted using the interaction dataset, which includes interactive driving scenarios. Experimental results showed that, compared with the best-performing state-of-the-art (SOTA) method REx, the mADE values (where lower is better) decreased by 0%, 36.59%, and 50.68% at 1, 2, and 3 s, respectively. The accuracy of the predicted trajectories in the unseen test domain was significantly improved.
备注/Memo
收稿日期:2023-6-26。
基金项目:国家重点研发计划项目(2021YFB1600501);国家自然科学基金项目(61906038);东南大学至善青年学者项目&中央高校基本科研业务费专项资金项目(2242021R41184).
作者简介:卢一凡,硕士研究生,主要研究方向为道路场景下的模型领域泛化。E-mail:18502517268@163.com;李煊鹏,副教授,博士,主要研究方向为道路场景下的环境感知、行为预测及因果推理。主持和参与国家级及省部级项目10余项,授权发明专利7项,发表学术论文30余篇。E-mail:li_xuanpeng@seu.edu.cn;薛启凡,博士研究生,主要研究方向为自动驾驶领域的轨迹预测和模型领域泛化。授权发明专利4项,发表学术论文 5篇。E-mail:xue_qifan@seu.edu.cn。
通讯作者:李煊鹏. E-mail:li_xuanpeng@seu.edu.cn
更新日期/Last Update:
2024-09-05