[1]黄昱程,肖子旺,武丹凤,等.时空融合与判别力增强的孪生网络目标跟踪方法[J].智能系统学报,2024,19(5):1218-1227.[doi:10.11992/tis.202306005]
 HUANG Yucheng,XIAO Ziwang,WU Danfeng,et al.Spatiotemporal fusion and discriminative augmentation for improved Siamese tracking[J].CAAI Transactions on Intelligent Systems,2024,19(5):1218-1227.[doi:10.11992/tis.202306005]
点击复制

时空融合与判别力增强的孪生网络目标跟踪方法

参考文献/References:
[1] 韩瑞泽, 冯伟, 郭青, 等. 视频单目标跟踪研究进展综述[J]. 计算机学报, 2022, 45(9): 1877-1907.
HAN Ruize, FENG Wei, GUO Qing, et al. Single object tracking research: a survey[J]. Chinese journal of computers, 2022, 45(9): 1877-1907.
[2] 王梦亭, 杨文忠, 武雍智. 基于孪生网络的单目标跟踪算法综述[J]. 计算机应用, 2023, 43(3): 661-673.
WANG Mengting, YANG Wenzhong, WU Yongzhi. Survey of single target tracking algorithms based on Siamese network[J]. Journal of computer applications, 2023, 43(3): 661-673.
[3] 程旭, 刘丽华, 王莹莹, 等. 基于多帧一致性修正的自监督孪生网络目标跟踪方法[J]. 计算机学报, 2022, 45(12): 2544-2560.
CHENG Xu, LIU Lihua, WANG Yingying, et al. A multi-frame consistency correction based self-supervised Siamese network method for object tracking[J]. Chinese journal of computers, 2022, 45(12): 2544-2560.
[4] 周春月, 颜巧. 基于高分辨率孪生网络的单目标追踪算法[J]. 北京交通大学学报, 2020, 44(5): 104-110.
ZHOU Chunyue, YAN Qiao. Single object tracking algorithm based on high-resolution Siamese network[J]. Journal of Beijing Jiaotong University, 2020, 44(5): 104-110.
[5] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Lecture Notes in Computer Science. Cham: Springer, 2016: 850-865.
[6] LI Bo, YAN Junjie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8971-8980.
[7] GUO Qing, FENG Wei, ZHOU Ce, et al. Learning dynamic Siamese network for visual object tracking[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 1781-1789.
[8] ZHANG Yunhua, WANG Lijun, QI Jinqing, et al. Structured siamese network for real-time visual tracking[C]//European Conference on Computer Vision. Cham: Springer, 2018: 355-370.
[9] 程语嫣, 张九根, 杨圣伟. 多特征融合和尺度适应的相关滤波跟踪算法[J]. 计算机工程与设计, 2020, 41(12): 3444-3450.
CHENG Yuyan, ZHANG Jiugen, YANG Shengwei. Correlation filtering tracking algorithm based on multi-feature fusion and scale adaptation[J]. Computer engineering and design, 2020, 41(12): 3444-3450.
[10] 茅正冲, 沈雪松. 基于多特征融合的相关滤波跟踪算法[J]. 计算机与数字工程, 2020, 48(11): 2645-2648, 2782.
MAO Zhengchong, SHEN Xuesong. Correlation filter tracking algorithm based on multi-feature fusion[J]. Computer & digital engineering, 2020, 48(11): 2645-2648, 2782.
[11] 蒲磊, 冯新喜, 侯志强, 等. 基于自适应背景选择和多检测区域的相关滤波算法[J]. 电子与信息学报, 2020, 42(12): 3061-3067.
PU Lei, FENG Xinxi, HOU Zhiqiang, et al. Correlation filter algorithm based on adaptive context selection and multiple detection areas[J]. Journal of electronics & information technology, 2020, 42(12): 3061-3067.
[12] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
[13] ZHANG Zhipeng, PENG Houwen. Deeper and wider Siamese networks for real-time visual tracking[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4586-4595.
[14] LI Bo, WU Wei, WANG Qiang, et al. SiamRPN: evolution of Siamese visual tracking with very deep networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4277-4286.
[15] GUO Dongyan, WANG Jun, CUI Ying, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 6268-6276.
[16] ZHU Zheng, WANG Qiang, LI Bo, et al. Distractor-aware siamese networks for visual object tracking[C]//European Conference on Computer Vision. Cham: Springer, 2018: 103–119.
[17] WANG Qiang, TENG Zhu, XING Junliang, et al. Learning attentions: residual attentional Siamese network for high performance online visual tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4854-4863.
[18] ZHANG Lichao, GONZALEZ-GARCIA A, VAN DE WEIJER J, et al. Learning the model update for Siamese trackers[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 4009-4018.
[19] ZHU Zheng, WU Wei, ZOU Wei, et al. End-to-end flow correlation tracking with spatial-temporal attention[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 548-557.
[20] LI Feng, TIAN Cheng, ZUO Wangmeng, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4904-4913.
[21] LUKE?IC A, VOJíR T, ZAJC L C, et al. Discriminative correlation filter with channel and spatial reliability[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4847-4856.
[22] DANELLJAN M, H?GER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 4310-4318.
[23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[24] ZHANG Shifeng, CHI Cheng, YAO Yongqiang, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9756-9765.
[25] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635.
[26] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[27] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
[28] FAN Heng, LIN Liting, YANG Fan, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5369-5378.
[29] RUSSAKOVSKY O, DENG Jia, SU Hao, et al. ImageNet large scale visual recognition challenge[J]. International journal of computer vision, 2015, 115(3): 211-252.
[30] WU Yi, LIM J, YANG M H. Online object tracking: a benchmark[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition. Portland: IEEE, 2013: 2411-2418.
[31] Kristan M , Leonardis A , Matas J , et al. The sixth visual object tracking VOT2018 challenge results[C]//European Conference on Computer Vision Workshops. Cham: Springer, 2018: 3–53.
[32] HUANG Lianghua, ZHAO Xin, HUANG Kaiqi. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(5): 1562-1577.
[33] LI Peixia, CHEN Boyu, OUYANG Wanli, et al. GradNet: gradient-guided network for visual object tracking[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6161-6170.
[34] HU Weiming, WANG Qiang, ZHANG Li, et al. SiamMask: a framework for fast online object tracking and segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(3): 3072-3089.
[35] YAN Bin, ZHAO Haojie, WANG Dong, et al. ‘skimming-perusal’ tracking: a framework for real-time and robust long-term tracking[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2385-2393.
[36] BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the power of deep tracking[C]//European Conference on Computer Vision. Cham: Springer, 2018: 493-509.
[37] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6931-6939.
[38] DANELLJAN M, BHAT G, KHAN F S, et al. ATOM: accurate tracking by overlap maximization[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4655-4664.
相似文献/References:
[1]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,4(1):1.
 LI De-yi.AI research and development in the network age[J].CAAI Transactions on Intelligent Systems,2009,4():1.
[2]赵克勤.二元联系数A+Bi的理论基础与基本算法及在人工智能中的应用[J].智能系统学报,2008,3(6):476.
 ZHAO Ke-qin.The theoretical basis and basic algorithm of binary connection A+Bi and its application in AI[J].CAAI Transactions on Intelligent Systems,2008,3():476.
[3]徐玉如,庞永杰,甘?? 永,等.智能水下机器人技术展望[J].智能系统学报,2006,1(1):9.
 XU Yu-ru,PANG Yong-jie,GAN Yong,et al.AUV—state-of-the-art and prospect[J].CAAI Transactions on Intelligent Systems,2006,1():9.
[4]王志良.人工心理与人工情感[J].智能系统学报,2006,1(1):38.
 WANG Zhi-liang.Artificial psychology and artificial emotion[J].CAAI Transactions on Intelligent Systems,2006,1():38.
[5]赵克勤.集对分析的不确定性系统理论在AI中的应用[J].智能系统学报,2006,1(2):16.
 ZHAO Ke-qin.The application of uncertainty systems theory of set pair analysis (SPU)in the artificial intelligence[J].CAAI Transactions on Intelligent Systems,2006,1():16.
[6]秦裕林,朱新民,朱? 丹.Herbert Simon在最后几年里的两个研究方向[J].智能系统学报,2006,1(2):11.
 QIN Yu-lin,ZHU Xin-min,ZHU Dan.Herbert Simons two research directions in his lost years[J].CAAI Transactions on Intelligent Systems,2006,1():11.
[7]谷文祥,李 丽,李丹丹.规划识别的研究及其应用[J].智能系统学报,2007,2(1):1.
 GU Wen-xiang,LI Li,LI Dan-dan.Research and application of plan recognition[J].CAAI Transactions on Intelligent Systems,2007,2():1.
[8]杨春燕,蔡 文.可拓信息-知识-智能形式化体系研究[J].智能系统学报,2007,2(3):8.
 YANG Chun-yan,CAI Wen.A formalized system of extension information-knowledge-intelligence[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[9]赵克勤.SPA的同异反系统理论在人工智能研究中的应用[J].智能系统学报,2007,2(5):20.
 ZHAO Ke-qin.The application of SPAbased identicaldiscrepancycontrary system theory in artificial intelligence research[J].CAAI Transactions on Intelligent Systems,2007,2():20.
[10]王志良,杨?? 溢,杨?? 扬,等.一种周期时变马尔可夫室内位置预测模型[J].智能系统学报,2009,4(6):521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
 WANG Zhi-liang,YANG Yi,YANG Yang,et al.A periodic time-varying Markov model for indoor location prediction[J].CAAI Transactions on Intelligent Systems,2009,4():521.[doi:10.3969/j.issn.1673-4785.2009.06.009]
[11]马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728.[doi:10.11992/tis.201611021]
 MA Shilong,WUNIRI Qiqige,LI Xiaoping.Deep learning with big data: state of the art and development[J].CAAI Transactions on Intelligent Systems,2016,11():728.[doi:10.11992/tis.201611021]
[12]王亚杰,邱虹坤,吴燕燕,等.计算机博弈的研究与发展[J].智能系统学报,2016,11(6):788.[doi:10.11992/tis.201609006]
 WANG Yajie,QIU Hongkun,WU Yanyan,et al.Research and development of computer games[J].CAAI Transactions on Intelligent Systems,2016,11():788.[doi:10.11992/tis.201609006]
[13]黄心汉.A3I:21世纪科技之光[J].智能系统学报,2016,11(6):835.[doi:10.11992/tis.201605022]
 HUANG Xinhan.A3I: the star of science and technology for the 21st century[J].CAAI Transactions on Intelligent Systems,2016,11():835.[doi:10.11992/tis.201605022]
[14]刘彪,黄蓉蓉,林和,等.基于卷积神经网络的盲文音乐识别研究[J].智能系统学报,2019,14(1):186.[doi:10.11992/tis.201805002]
 LIU Biao,HUANG Rongrong,LIN He,et al.Research on braille music recognition based on convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2019,14():186.[doi:10.11992/tis.201805002]
[15]梁慧,曹峰,钱宇华,等.图像情境下的数字序列逻辑学习[J].智能系统学报,2019,14(6):1189.[doi:10.11992/tis.201905044]
 LIANG Hui,CAO Feng,QIAN Yuhua,et al.Number sequence logic learning in image context[J].CAAI Transactions on Intelligent Systems,2019,14():1189.[doi:10.11992/tis.201905044]
[16]陈小平.人工智能中的封闭性和强封闭性——现有成果的能力边界、应用条件和伦理风险[J].智能系统学报,2020,15(1):114.[doi:10.11992/tis.202001001]
 CHEN Xiaoping.Criteria of closeness and strong closeness in artificial intelligence——limits, application conditions and ethical risks of existing technologies[J].CAAI Transactions on Intelligent Systems,2020,15():114.[doi:10.11992/tis.202001001]
[17]殷昌盛,杨若鹏,朱巍,等.多智能体分层强化学习综述[J].智能系统学报,2020,15(4):646.[doi:10.11992/tis.201909027]
 YIN Changsheng,YANG Ruopeng,ZHU Wei,et al.A survey on multi-agent hierarchical reinforcement learning[J].CAAI Transactions on Intelligent Systems,2020,15():646.[doi:10.11992/tis.201909027]
[18]杨瑞,严江鹏,李秀.强化学习稀疏奖励算法研究——理论与实验[J].智能系统学报,2020,15(5):888.[doi:10.11992/tis.202003031]
 YANG Rui,YAN Jiangpeng,LI Xiu.Survey of sparse reward algorithms in reinforcement learning — theory and experiment[J].CAAI Transactions on Intelligent Systems,2020,15():888.[doi:10.11992/tis.202003031]
[19]王凯诚,鲁华祥,龚国良,等.基于注意力机制的显著性目标检测方法[J].智能系统学报,2020,15(5):956.[doi:10.11992/tis.201903001]
 WANG Kaicheng,LU Huaxiang,GONG Guoliang,et al.Salient object detection method based on the attention mechanism[J].CAAI Transactions on Intelligent Systems,2020,15():956.[doi:10.11992/tis.201903001]
[20]杜永萍,赵以梁,阎婧雅,等.基于深度学习的机器阅读理解研究综述[J].智能系统学报,2022,17(6):1074.[doi:10.11992/tis.202107024]
 DU Yongping,ZHAO Yiliang,YAN Jingya,et al.Survey of machine reading comprehension based on deep learning[J].CAAI Transactions on Intelligent Systems,2022,17():1074.[doi:10.11992/tis.202107024]

备注/Memo

收稿日期:2023-6-2。
作者简介:黄昱程,硕士研究生,主要研究方向为计算机视觉、目标跟踪。E-mail:1063439128@qq.com;肖子旺,硕士研究生,主要研究方向为计算机视觉、目标检测。E-mail:107552103759@stu.xju.edu.cn;艾斯卡尔·艾木都拉,教授,博士生导师,主要研究方向为语音识别与合成、模式识别与图像处理、自然语言处理。登记软件著作权40余项,发表学术论文200余篇。E-mail:askar@xju.edu.cn。
通讯作者:艾斯卡尔·艾木都拉. E-mail:askar@xju.edu.cn

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com