[1]赵泽华,梁美玉,薛哲,等.基于数据质量评估的高效强化联邦学习节点动态采样优化[J].智能系统学报,2024,19(6):1552-1561.[doi:10.11992/tis.202305054]
 ZHAO Zehua,LIANG Meiyu,XUE Zhe,et al.Client dynamic sampling optimization of efficient reinforcement federated learning based on data quality assessment[J].CAAI Transactions on Intelligent Systems,2024,19(6):1552-1561.[doi:10.11992/tis.202305054]
点击复制

基于数据质量评估的高效强化联邦学习节点动态采样优化

参考文献/References:
[1] 林伟伟, 石方, 曾岚, 等. 联邦学习开源框架综述[J]. 计算机研究与发展, 2023, 60(7): 1551-1580.
LIN Weiwei, SHI Fang, ZENG Lan, et al. Survey of federated learning open-source frameworks[J]. Journal of computer research and development, 2023, 60(7): 1551-1580.
[2] 田家会, 吕锡香, 邹仁朋, 等. 一种联邦学习中的公平资源分配方案[J]. 计算机研究与发展, 2022, 59(6): 1240-1254.
TIAN Jiahui, LYU Xixiang, ZOU Renpeng, et al. A fair resource allocation scheme in federated learning[J]. Journal of computer research and development, 2022, 59(6): 1240-1254.
[3] LUO Bing, XIAO Wenli, WANG Shiqiang, et al. Tackling system and statistical heterogeneity for federated learning with adaptive client sampling[C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications. London: IEEE, 2022: 1739-1748.
[4] 李少波, 杨磊, 李传江, 等. 联邦学习概述: 技术、应用及未来[J]. 计算机集成制造系统, 2022, 28(7): 2119-2138.
LI Shaobo , YANG Lei , LI Chuangjiang, et al. Overview of federated learning: technology, applications and future[J]. Computer integrated manufacturing systems, 2022, 28(7): 2119-2138.
[5] 邱鑫源, 叶泽聪, 崔翛龙, 等. 联邦学习通信开销研究综述[J]. 计算机应用, 2022, 42(2): 333-342.
QIU Xinyuan, YE Zecong, CUI Xiaolong, et al. Survey of communication overhead of federated learning[J]. Journal of computer applications, 2022, 42(2): 333-342.
[6] KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: stochastic controlled averaging for federated learning[EB/OL]. (2019-10-14)[2021-01-01]. http://arxiv.org/abs/1910.06378.
[7] SONG Tianshu, TONG Yongxin, WEI Shuyue. Profit allocation for federated learning[C]//2019 IEEE International Conference on Big Data. Los Angeles: IEEE, 2019: 2577-2586.
[8] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. (2016-02-17)[2021-01-01]. http://arxiv.org/abs/1602.05629.
[9] LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[EB/OL]. (2018-12-14)[2021-01-01]. http://arxiv.org/abs/1812.06127.
[10] NISHIO T, YONETANI R. Client selection for federated learning with heterogeneous resources in mobile edge[C]//ICC 2019—2019 IEEE International Conference on Communications. Shanghai: IEEE, 2019: 1-7.
[11] CHO Y J, WANG Jianyu, JOSHI G. Client selection in federated learning: convergence analysis and power-of-choice selection strategies[EB/OL]. (2020-12-03)[2021-01-01]. http://arxiv.org/abs/2010.01243.
[12] FRABONI Y, VIDAL R, KAMENI L, et al. Clustered sampling: low-variance and improved representativity for clients selection in federated learning[EB/OL]. (2021-05-12)[2021-12-01]. http://arxiv.org/abs/2105.05883.
[13] ZHAO Yue, LI Meng, LAI Liangzhen, et al. Federated learning with non-IID data[EB/OL]. (2018-06-02)[2021-01-01]. http://arxiv.org/abs/1806.00582.
[14] KOLLIAS G, SALONIDIS T, WANG Shiqiang. Sketch to Skip and Select: communication efficient federated learning using locality sensitive hashing[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2023: 72-83.
[15] WANG Hao, KAPLAN Z, NIU Di, et al. Optimizing federated learning on non-IID data with reinforcement learning[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications. Toronto: IEEE, 2020: 1698-1707.
[16] HUANG Tiansheng, LIN Weiwei, SHEN Li, et al. Stochastic client selection for federated learning with volatile clients[J]. IEEE internet of things journal, 2022, 9(20): 20055-20070.
[17] JI Shaoxiong, JIANG Wenqi, WALID A, et al. Dynamic sampling and selective masking for communication-efficient federated learning[EB/OL]. (2020-03-21)[2021-01-01]. http://arxiv.org/abs/2003.09603.
[18] RAI S, KUMARI A, PRASAD D K. Client selection in federated learning under imperfections in environment[J]. AI, 2022, 3(1): 124-145.
[19] LI Qinbin, HE Bingsheng, SONG D. Model-contrastive federated learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10708-10717.
[20] WACHI A, SUI Yanan. Safe reinforcement learning in constrained Markov decision processes[EB/OL]. (2008-08-15)[2021-01-01]. http://arxiv.org/abs/2008.06626.
[21] HENDERSON P, ISLAM R, BACHMAN P, et al. Deep reinforcement learning that matters[C]//Proceedings of the AAAI Conference on Artificial Intelligence. AAAI , 2018.
[22] FENG Y, LI L, LIU Q. A kernel loss for solving the bellman equation[J]. Advances in neural information processing systems, 2019, 32.
[23] ZHANG Jie, GUO Song, QU Zhihao, et al. Adaptive federated learning on non-IID data with resource constraint[J]. IEEE transactions on computers, 2022, 71(7): 1655-1667.
[24] NICOLSON A, PALIWAL K K. Deep learning for minimum mean-square error approaches to speech enhancement[J]. Speech communication, 2019, 111: 44-55.
相似文献/References:
[1]周文吉,俞扬.分层强化学习综述[J].智能系统学报,2017,12(5):590.[doi:10.11992/tis.201706031]
 ZHOU Wenji,YU Yang.Summarize of hierarchical reinforcement learning[J].CAAI Transactions on Intelligent Systems,2017,12():590.[doi:10.11992/tis.201706031]
[2]王作为,徐征,张汝波,等.记忆神经网络在机器人导航领域的应用与研究进展[J].智能系统学报,2020,15(5):835.[doi:10.11992/tis.202002020]
 WANG Zuowei,XU Zheng,ZHANG Rubo,et al.Research progress and application of memory neural network in robot navigation[J].CAAI Transactions on Intelligent Systems,2020,15():835.[doi:10.11992/tis.202002020]
[3]杨瑞,严江鹏,李秀.强化学习稀疏奖励算法研究——理论与实验[J].智能系统学报,2020,15(5):888.[doi:10.11992/tis.202003031]
 YANG Rui,YAN Jiangpeng,LI Xiu.Survey of sparse reward algorithms in reinforcement learning — theory and experiment[J].CAAI Transactions on Intelligent Systems,2020,15():888.[doi:10.11992/tis.202003031]
[4]王健宗,肖京,朱星华,等.联邦推荐系统的协同过滤冷启动解决方法[J].智能系统学报,2021,16(1):178.[doi:10.11992/tis.202009032]
 WANG Jianzong,XIAO Jing,ZHU Xinghua,et al.Cold starts in collaborative filtering for federated recommender systems[J].CAAI Transactions on Intelligent Systems,2021,16():178.[doi:10.11992/tis.202009032]
[5]赵玉新,杜登辉,成小会,等.基于强化学习的海洋移动观测网络观测路径规划方法[J].智能系统学报,2022,17(1):192.[doi:10.11992/tis.202106004]
 ZHAO Yuxin,DU Denghui,CHENG Xiaohui,et al.Path planning for mobile ocean observation network based on reinforcement learning[J].CAAI Transactions on Intelligent Systems,2022,17():192.[doi:10.11992/tis.202106004]
[6]窦勇敢,袁晓彤.基于隐式随机梯度下降优化的联邦学习[J].智能系统学报,2022,17(3):488.[doi:10.11992/tis.202106029]
 DOU Yonggan,YUAN Xiaotong.Federated learning with implicit stochastic gradient descent optimization[J].CAAI Transactions on Intelligent Systems,2022,17():488.[doi:10.11992/tis.202106029]
[7]欧阳勇平,魏长赟,蔡帛良.动态环境下分布式异构多机器人避障方法研究[J].智能系统学报,2022,17(4):752.[doi:10.11992/tis.202106044]
 OUYANG Yongping,WEI Changyun,CAI Boliang.Collision avoidance approach for distributed heterogeneous multirobot systems in dynamic environments[J].CAAI Transactions on Intelligent Systems,2022,17():752.[doi:10.11992/tis.202106044]
[8]王竣禾,姜勇.基于深度强化学习的动态装配算法[J].智能系统学报,2023,18(1):2.[doi:10.11992/tis.202201006]
 WANG Junhe,JIANG Yong.Dynamic assembly algorithm based on deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2023,18():2.[doi:10.11992/tis.202201006]
[9]陶鑫钰,王艳,纪志成.基于深度强化学习的节能工艺路线发现方法[J].智能系统学报,2023,18(1):23.[doi:10.11992/tis.202112030]
 TAO Xinyu,WANG Yan,JI Zhicheng.Energy-saving process route discovery method based on deep reinforcement learning[J].CAAI Transactions on Intelligent Systems,2023,18():23.[doi:10.11992/tis.202112030]
[10]张钰欣,赵恩娇,赵玉新.规则耦合下的多异构子网络MADDPG博弈对抗算法[J].智能系统学报,2024,19(1):190.[doi:10.11992/tis.202303037]
 ZHANG Yuxin,ZHAO Enjiao,ZHAO Yuxin.MADDPG game confrontation algorithm of polyisomer network based on rule coupling based on rule coupling[J].CAAI Transactions on Intelligent Systems,2024,19():190.[doi:10.11992/tis.202303037]

备注/Memo

收稿日期:2023-5-31。
基金项目:国家自然科学基金项目(62192784,U22B2038,62172056,62272058);中国人工智能学会–华为MindSpore学术奖励基金项目(CAAIXSJLJJ-2021-007B).
作者简介:赵泽华,硕士,主要研究方向为联邦学习中的高效通信。E-mail:zehuazhao@bupt.edu.cn;梁美玉,教授,博士生导师,主要研究方向为人工智能、数据挖掘、多媒体信息处理、计算机视觉。主持和参与国家自然科学基金重大项目、国家重点研发计划项目、973计划课题、国家自然科学基金重点项目/重大国际合作项目/面上项目/青年科学基金等科研项目。发表学术论文100余篇,出版学术专著3部,申请和授权发明专利40余项。E-mail:meiyu1210@bupt.edu.cn;薛哲,副教授。主要研究方向为人工智能、机器学习、数据挖掘、多媒体信息处理。E-mail:xuezhe@bupt.edu.cn。
通讯作者:梁美玉. E-mail:meiyu1210@bupt.edu.cn

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com