[1]赵泽华,梁美玉,薛哲,等.基于数据质量评估的高效强化联邦学习节点动态采样优化[J].智能系统学报,2024,19(6):1552-1561.[doi:10.11992/tis.202305054]
ZHAO Zehua,LIANG Meiyu,XUE Zhe,et al.Client dynamic sampling optimization of efficient reinforcement federated learning based on data quality assessment[J].CAAI Transactions on Intelligent Systems,2024,19(6):1552-1561.[doi:10.11992/tis.202305054]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1552-1561
栏目:
学术论文—人工智能基础
出版日期:
2024-12-05
- Title:
-
Client dynamic sampling optimization of efficient reinforcement federated learning based on data quality assessment
- 作者:
-
赵泽华, 梁美玉, 薛哲, 李昂, 张珉
-
北京邮电大学 智能通信软件与多媒体北京市重点实验室 北京 100876
- Author(s):
-
ZHAO Zehua, LIANG Meiyu, XUE Zhe, LI Ang, ZHANG Min
-
Beijing Key Laboratory of Intelligent Communication Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China
-
- 关键词:
-
联邦学习; 深度强化学习; 客户端动态采样; 贡献指数; 数据质量; 通信效率; 沙普利值; 模型精度
- Keywords:
-
federated learning; deep reinforcement learning; client dynamic sampling; contribution index; data quality; communication efficiency; Shapley value; model accuracy
- 分类号:
-
TP295
- DOI:
-
10.11992/tis.202305054
- 摘要:
-
系统异构性和统计异构性的存在使得通信开销和通信效率成为联邦学习的关键瓶颈之一,在众多参与方中只选取一部分客户端执行模型更新和聚合可以有效降低通信开销,但是选择偏差和客户端上的数据质量分布不平衡对客户端采样方法提出了额外的挑战。为此,提出数据质量评估的高效强化联邦学习节点动态采样优化方法(client dynamic sampling optimization of efficient reinforcement federated learning based on data quality assessment, RQCS),该方法采用沙普利值的贡献指数评估客户端上的数据质量,基于深度强化学习模型,智能的动态选择具有高数据质量且能提高最终模型精度的客户端参与每一轮的联邦学习,以抵消数据质量分布不平衡引入的偏差,加速模型收敛并提高模型精度。在MNIST及CIFAR-10数据集上的实验表明,所提出算法与其他算法相比,在减少通信开销的同时进一步加快了收敛速度,同时在模型最终准确性上也有较好的性能。
- Abstract:
-
Communication cost and efficiency are the key bottlenecks of federated learning due to the existence of system and statistical heterogeneities. Selecting only a subset of clients to perform model updates and aggregation can effectively reduce communication costs among numerous participants. However, biased selection and uneven distribution of data quality across clients pose additional challenges to client sampling methods. Therefore, this paper proposes a method for client dynamic sampling optimization in efficient reinforcement federated learning based on data quality assessment (RQCS) to address the aforementioned issues. This method evaluates data quality on clients using a contribution index based on the Shapley value and intelligently selects clients with high data quality for each round of federated learning. By leveraging reinforcement learning, the method aims to offset the bias introduced by uneven data quality distribution, accelerate model convergence, and improve model accuracy. Experiments on the MNIST and CIFAR-10 datasets show that the proposed algorithm not only reduces communication costs but also further accelerates convergence speed and achieves better performance in model accuracy compared to other algorithms.
备注/Memo
收稿日期:2023-5-31。
基金项目:国家自然科学基金项目(62192784,U22B2038,62172056,62272058);中国人工智能学会–华为MindSpore学术奖励基金项目(CAAIXSJLJJ-2021-007B).
作者简介:赵泽华,硕士,主要研究方向为联邦学习中的高效通信。E-mail:zehuazhao@bupt.edu.cn;梁美玉,教授,博士生导师,主要研究方向为人工智能、数据挖掘、多媒体信息处理、计算机视觉。主持和参与国家自然科学基金重大项目、国家重点研发计划项目、973计划课题、国家自然科学基金重点项目/重大国际合作项目/面上项目/青年科学基金等科研项目。发表学术论文100余篇,出版学术专著3部,申请和授权发明专利40余项。E-mail:meiyu1210@bupt.edu.cn;薛哲,副教授。主要研究方向为人工智能、机器学习、数据挖掘、多媒体信息处理。E-mail:xuezhe@bupt.edu.cn。
通讯作者:梁美玉. E-mail:meiyu1210@bupt.edu.cn
更新日期/Last Update:
2024-11-05