[1]赵振兵,王睿,王艺衡,等.联合结构-语义关系图知识推理的输电线路螺栓缺陷识别方法[J].智能系统学报,2024,19(6):1584-1592.[doi:10.11992/tis.202305050]
 ZHAO Zhenbing,WANG Rui,WANG Yiheng,et al.Bolt defect recognition method for transmission line based on joint structure-semantic relationship graph knowledge reasoning[J].CAAI Transactions on Intelligent Systems,2024,19(6):1584-1592.[doi:10.11992/tis.202305050]
点击复制

联合结构-语义关系图知识推理的输电线路螺栓缺陷识别方法

参考文献/References:
[1] 周远翔, 陈健宁, 张灵, 等. “双碳” 与“新基建” 背景下特高压输电技术的发展机遇[J]. 高电压技术, 2021, 47(7): 2396-2408.
ZHOU Yuanxiang, CHEN Jianning, ZHANG Ling, et al. Opportunity for developing ultra high voltage transmission technology under the emission peak, carbon neutrality and new infrastructure[J]. High voltage engineering, 2021, 47(7): 2396-2408.
[2] SUMAGAYAN M U, PREMACHANDRA C, MANGORSI R B, et al. Detecting power lines using point instance network for distribution line inspection[J]. IEEE access, 2021, 9: 107998-108008.
[3] 傅博, 姜勇, 王洪光, 等. 输电线路巡检图像智能诊断系统[J]. 智能系统学报, 2016, 11(1): 70-77.
FU Bo, JIANG Yong, WANG Hongguang, et al. Intelligent diagnosis system for patrol check images of power transmission lines[J]. CAAI transactions on intelligent systems, 2016, 11(1): 70-77.
[4] MAO Tianqi, HUANG Kai, ZENG Xianwu, et al. Development of power transmission line defects diagnosis system for UAV inspection based on binocular depth imaging technology[C]//2019 2nd International Conference on Electrical Materials and Power Equipment. Guangzhou: IEEE, 2019: 478-481.
[5] 赵振兵, 张帅, 蒋炜, 等. 基于DBSCAN-FPN的输电线路螺栓缺销检测方法[J]. 中国电力, 2021, 54(3): 45-54.
ZHAO Zhenbing, ZHANG Shuai, JIANG Wei, et al. Detection method for bolts with mission pins on transmission lines based on DBSCAN-FPN[J]. Electric power, 2021, 54(3): 45-54.
[6] ZHAO Zhenbing, QI Hongyu, QI Yincheng, et al. Detection method based on automatic visual shape clustering for pin-missing defect in transmission lines[J]. IEEE transactions on instrumentation and measurement, 2020, 69(9): 6080-6091.
[7] HE Hui, LI Yuchen, YANG Jing, et al. Pin-missing defect recognition based on feature fusion and spatial attention mechanism[J]. Energy reports, 2022, 8: 656-663.
[8] WANG Hongchao, SHAO Yunfeng, ZOU Suli, et al. Detection of cotter pins missing of connection fittings on transmission lines of power system[C]//2021 40th Chinese Control Conference. Shanghai: IEEE, 2021: 6873-6879.
[9] LIN Z, LIANG Y, JIANG Q. A bolt defect recognition algorithm based on attention model[C]//Proceedings of the 7th International Conference on Fuzzy Systems and Data Mining. Seoul: IOS, 2021: 86-93.
[10] 张珂, 何颖宣, 赵凯, 等. 可变形NTS-Net的螺栓属性多标签分类[J]. 中国图象图形学报, 2021, 26(11): 2582-2593.
ZHANG Ke, HE Yingxuan, ZHAO Kai, et al. Multi-label classification method of bolt attributes based on deformable NTS-Net[J]. Journal of image and graphics, 2021, 26(11): 2582-2593.
[11] ZHAO Zhenbing, WANG Rui, LI Yanxu, et al. A new multilabel recognition framework for transmission lines bolt defects based on the combination of semantic knowledge and structural knowledge[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 5020211.
[12] 赵振兵, 王睿, 赵文清, 等. 基于图知识推理的输电线路缺销螺栓识别方法[J]. 智能系统学报, 2023, 18(2): 372-380.
ZHAO Zhenbing, WANG Rui, ZHAO Wenqing, et al. Pin-missing bolts recognition method for transmission lines based on graph knowledge reasoning[J]. CAAI transactions on intelligent systems, 2023, 18(2): 372-380.
[13] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[14] 赵强, 左石. 输电线路金具理论与应用[M]. 北京: 中国电力出版社, 2013: 2-12.
[15] OGUZ YAZICI V, GONZALEZ-GARCIA A, RAMISA A, et al. Orderless recurrent models for multi-label classification[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13437-13446.
[16] KE Xiao, LIU Tongan, LI Zhenda. Human attribute recognition method based on pose estimation and multiple-feature fusion[J]. Signal, image and video processing, 2020, 14(7): 1441-1449.
[17] ZHOU Feng, HUANG Sheng, XING Yun. Deep semantic dictionary learning for multi-label image classification[EB/OL]. (2020-12-23)[2021-12-01]. https://arxiv.orglabs/2012.12509.
[18] CHEN Zhaomin, WEI Xiushen, WANG Peng, et al. Multi-label image recognition with graph convolutional networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5172-5181.
[19] GAO Binbin, ZHOU Hongyu. Learning to discover multi-class attentional regions for multi-label image recognition[J]. IEEE transactions on image processing: a publication of the IEEE signal processing society, 2021, 30: 5920-5932.
[20] NGUYEN H D, VU X S, LE D T. Modular graph transformer networks for multi-label image classification[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: Association for the Advancement of Artificial Intelligence, 2021: 9092-9100.
[21] FU Kui, LI Jia, MA Lin, et al. Intrinsic relationship reasoning for small object detection[EB/OL]. (2020-09-02)[2021-01-01]. https://arxiv.org/abs/2009.00833.
[22] ZHAO Jiawei, YAN Ke, ZHAO Yifan, et al. Transformer-based dual relation graph for multi-label image recognition[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 163-172.
[23] YE Jin, HE Junjun, PENG Xiaojiang, et al. Attention-driven dynamic graph convolutional network for multi-label image recognition[C]//European Conference on Computer Vision. Cham: Springer, 2020: 649-665.
[24] LIU Yong, WANG Ruiping, SHAN Shiguang, et al. Structure inference net: object detection using scene-level context and instance-level relationships[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6985-6994.
[25] 翟永杰, 杨旭, 赵振兵, 等. 融合共现推理的Faster R-CNN输电线路金具检测[J]. 智能系统学报, 2021, 16(2): 237-246.
ZHAI Yongjie, YANG Xu, ZHAO Zhenbing, et al. Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J]. CAAI transactions on intelligent systems, 2021, 16(2): 237-246.
[26] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09)[2021-01-01]. https://arxiv.org/abs/1609.02907.
相似文献/References:
[1]岳湘,王洪光,姜勇,等.一种110kV输电线路巡检机器人机构研究[J].智能系统学报,2016,11(2):155.[doi:10.11992/tis.201511032]
 YUE Xiang,WANG Hongguang,JIANG Yong,et al.Design approach for a 110 kV power transmission line inspection robot mechanism[J].CAAI Transactions on Intelligent Systems,2016,11():155.[doi:10.11992/tis.201511032]
[2]宋屹峰,王洪光,康文杰,等.DOI面向断股补修作业任务的电力机器人机构设计[J].智能系统学报,2017,12(2):150.[doi:10.11992/tis.201605004]
 SONG Yifeng,WANG Hongguang,KANG Wenjie,et al.Optimizing electric power robot design for broken-strand repair tasks[J].CAAI Transactions on Intelligent Systems,2017,12():150.[doi:10.11992/tis.201605004]
[3]翟永杰,杨旭,赵振兵,等.融合共现推理的Faster R-CNN输电线路金具检测[J].智能系统学报,2021,16(2):237.[doi:10.11992/tis.202012023]
 ZHAI Yongjie,YANG Xu,ZHAO Zhenbing,et al.Integrating co-occurrence reasoning for Faster R-CNN transmission line fitting detection[J].CAAI Transactions on Intelligent Systems,2021,16():237.[doi:10.11992/tis.202012023]
[4]翟永杰,王乾铭,杨旭,等.融合外部知识的输电线路多金具解耦检测方法[J].智能系统学报,2022,17(5):980.[doi:10.11992/tis.202107026]
 ZHAI Yongjie,WANG Qianming,YANG Xu,et al.A multi-fitting decoupling detection method for transmission lines based on external knowledge[J].CAAI Transactions on Intelligent Systems,2022,17():980.[doi:10.11992/tis.202107026]
[5]戚银城,赵席彬,耿劭锋,等.基于遮挡关系推理的输电线路图像金具检测[J].智能系统学报,2022,17(6):1154.[doi:10.11992/tis.202108036]
 QI Yincheng,ZHAO Xibin,GENG Shaofeng,et al.Fittings detection in transmission line images with occlusion relation inference[J].CAAI Transactions on Intelligent Systems,2022,17():1154.[doi:10.11992/tis.202108036]
[6]王巍,杨耀权,王乾铭,等.嵌入视觉关系掩码的多类别金具检测方法[J].智能系统学报,2023,18(3):440.[doi:10.11992/tis.202202021]
 WANG Wei,YANG Yaoquan,WANG Qianming,et al.A multi-category fitting detection method with embedded visual relation masks[J].CAAI Transactions on Intelligent Systems,2023,18():440.[doi:10.11992/tis.202202021]
[7]赵振兵,郭广学,王艺衡,等.融合边缘感知与统计纹理知识的输电线路金具锈蚀检测[J].智能系统学报,2024,19(5):1228.[doi:10.11992/tis.202306009]
 ZHAO Zhenbing,GUO Guangxue,WANG Yiheng,et al.Rust detection in transmission line fittings via fusion of edge perception and statistical texture knowledge[J].CAAI Transactions on Intelligent Systems,2024,19():1228.[doi:10.11992/tis.202306009]
[8]赵振兵,王睿,赵文清,等.基于图知识推理的输电线路缺销螺栓识别方法[J].智能系统学报,2023,18(2):372.[doi:10.11992/tis.202205004]
 ZHAO Zhenbing,WANG Rui,ZHAO Wenqing,et al.Pin-missing bolts recognition method for transmission lines based on graph knowledge reasoning[J].CAAI Transactions on Intelligent Systems,2023,18():372.[doi:10.11992/tis.202205004]
[9]戚银城,耿劭锋,赵振兵,等.基于特征迁移的螺栓图像超分辨率处理方法[J].智能系统学报,2023,18(4):858.[doi:10.11992/tis.202201009]
 QI Yincheng,GENG Shaofeng,ZHAO Zhenbing,et al.A method for super resolution processing of bolt image based on feature transfer[J].CAAI Transactions on Intelligent Systems,2023,18():858.[doi:10.11992/tis.202201009]

备注/Memo

收稿日期:2023-5-30。
基金项目:国家自然科学基金项目(61871182, U21A20486);河北省自然科学基金项目(F2020502009, F2021502008, F2021502013).
作者简介:赵振兵,教授,博士,主要研究方向为电力视觉。主持国家自然科学基金项目等纵向课题10项,获省科技进步一等奖2项。以第一完成人获得国家专利授权16项;以第一作者出版专著2部,发表学术论文50余篇。E-mail:zhaozhenbing@ncepu.edu.cn;王睿,硕士研究生,主要研究方向为电力视觉与知识推理。E-mail:ncepuwr@163.com;苗思雨,博士研究生,主要研究方向为电力视觉技术。E-mail:siyumiao_hbu@163.com。
通讯作者:赵振兵. E-mail:zhaozhenbing@ncepu.edu.cn

更新日期/Last Update: 2024-11-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com