[1]赵振兵,王睿,王艺衡,等.联合结构-语义关系图知识推理的输电线路螺栓缺陷识别方法[J].智能系统学报,2024,19(6):1584-1592.[doi:10.11992/tis.202305050]
ZHAO Zhenbing,WANG Rui,WANG Yiheng,et al.Bolt defect recognition method for transmission line based on joint structure-semantic relationship graph knowledge reasoning[J].CAAI Transactions on Intelligent Systems,2024,19(6):1584-1592.[doi:10.11992/tis.202305050]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1584-1592
栏目:
人工智能院长论坛
出版日期:
2024-12-05
- Title:
-
Bolt defect recognition method for transmission line based on joint structure-semantic relationship graph knowledge reasoning
- 作者:
-
赵振兵1,2,3, 王睿1, 王艺衡1, 苗思雨1, 赵文清2,4
-
1. 华北电力大学 电气与电子工程学院, 河北 保定 071003;
2. 华北电力大学 复杂能源系统智能计算教育部工程研究中心, 河北 保定 071003;
3. 华北电力大学 河北省电力物联网技术重点实验室, 河北 保定 071003;
4. 华北电力大学 控制与计算机工程学院, 河北 保定 071003
- Author(s):
-
ZHAO Zhenbing1,2,3, WANG Rui1, WANG Yiheng1, MIAO Siyu1, ZHAO Wenqing2,4
-
1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China;
2. Engineering Research Center of Intelligent Computing for Complex Energy Systems, Ministry of Education, North China Electric Power Univ
-
- 关键词:
-
输电线路; 螺栓; 缺陷识别; 知识表达; 知识推理; 图神经网络; 结构关系; 语义关系
- Keywords:
-
transmission lines; bolts; defects recognition; knowledge representation; knowledge reasoning; graph neural networks; structural relationships; semantic relationships
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.202305050
- 摘要:
-
针对输电线路螺栓缺陷识别任务中存在的视觉不可分与语义歧义问题,提出联合结构-语义关系图知识推理的输电线路螺栓缺陷识别方法。通过语义关系图提取螺栓各属性有判别力的特征类映射,经结构关系图捕获螺栓上下文信息并建立跨不同尺度的空间关系,采用图卷积神经网络经协作学习,利用螺栓各属性之间的结构知识与语义知识实现语义关系图节点的更新,通过螺栓训练数据集统计的标签共现信息辅助图知识推理网络提高螺栓缺陷识别的准确率。在实验阶段,选取3类典型金具上的13类螺栓属性作为研究对象。对比实验结果表明,本文方法对螺栓缺陷的识别效果优于其他方法,较基线模型提升了8.12%的准确率。
- Abstract:
-
To tackle the issues of visual inseparability and semantic ambiguity in identifying transmission line bolt defects, a new method using joint structure–semantic relationship graph knowledge reasoning is proposed. Initially, a semantic expression module extracts feature class mappings that highlight the discriminative attributes of each bolt. Subsequently, the structural relationship graph captures contextual bolt information and establishes spatial relationships across different scales. Utilizing a graph convolutional neural network and cooperative learning, the semantic relation graph nodes are updated with structural and semantic knowledge derived from the bolt attributes. Finally, the network employs label co-occurrence information from the bolt training data set to improve the accuracy of defect recognition. In the experimental stage, 13 types of bolt properties across 3 types of typical fittings were examined. Comparative experiments show that the method proposed in this study outperforms other methods in identifying bolt defects, boosting accuracy by 8.12% over the baseline model.
备注/Memo
收稿日期:2023-5-30。
基金项目:国家自然科学基金项目(61871182, U21A20486);河北省自然科学基金项目(F2020502009, F2021502008, F2021502013).
作者简介:赵振兵,教授,博士,主要研究方向为电力视觉。主持国家自然科学基金项目等纵向课题10项,获省科技进步一等奖2项。以第一完成人获得国家专利授权16项;以第一作者出版专著2部,发表学术论文50余篇。E-mail:zhaozhenbing@ncepu.edu.cn;王睿,硕士研究生,主要研究方向为电力视觉与知识推理。E-mail:ncepuwr@163.com;苗思雨,博士研究生,主要研究方向为电力视觉技术。E-mail:siyumiao_hbu@163.com。
通讯作者:赵振兵. E-mail:zhaozhenbing@ncepu.edu.cn
更新日期/Last Update:
2024-11-05