[1]鲁斌,杨振宇,孙洋,等.基于多通道交叉注意力融合的三维目标检测算法[J].智能系统学报,2024,19(4):885-897.[doi:10.11992/tis.202305029]
 LU Bin,YANG Zhenyu,SUN Yang,et al.3D object detection algorithm with multi-channel cross attention fusion[J].CAAI Transactions on Intelligent Systems,2024,19(4):885-897.[doi:10.11992/tis.202305029]
点击复制

基于多通道交叉注意力融合的三维目标检测算法

参考文献/References:
[1] HE Chenhang, LI Ruihuang, LI Shuai, et al. Voxel set transformer: a set-to-set approach to 3D object detection from point clouds[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 8417-8427.
[2] 张新钰, 邹镇洪, 李志伟, 等. 面向自动驾驶目标检测的深度多模态融合技术[J]. 智能系统学报, 2020, 15(4): 758–771
ZHANG Xinyu, ZOU Zhenhong, LI Zhiwei, et al. Deep multi-modal fusion in object detection for autonomous driving[J]. CAAI transactions on intelligent systems, 2020, 15(4): 758–771
[3] 王凤随, 陈金刚, 王启胜, 等. 自适应上下文特征的多尺度目标检测算法[J]. 智能系统学报, 2022, 17(2): 276–285
WANG Fengsui, CHEN Jingang, WANG Qisheng, et al. Multi-scale target detection algorithm based on adaptive context features[J]. CAAI transactions on intelligent systems, 2022, 17(2): 276–285
[4] FERNANDES D, SILVA A, NéVOA R, et al. Point-cloud based 3D object detection and classification methods for self-driving applications: a survey and taxonomy[J]. Information fusion, 2021, 68: 161–191.
[5] QI Charles R, SU Hao, MO Kaichun, et al. PointNet: deep learning on point sets for 3d classification and segmentation[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 652-660.
[6] SHI Shaoshuai, WANG Xiaogang, LI Hongsheng. Pointrcnn: 3D object proposal generation and detection from point cloud[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 770-779.
[7] YANG Zetong, SUN Yanan, LIU Shu, et al. STD: sparse-to-dense 3D object detector for point cloud[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1951-1960.
[8] YANG Zetong, SUN Yanan, LIU Shu, et al. 3DSSD: point-based 3D single stage object detector[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11040-11048.
[9] SHI Weijing, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1711-1719.
[10] ZHANG Yifan, HU Qingyong, XU Guoquan, et al. Not all points are equal: learning highly efficient point-based detectors for 3D lidar point clouds[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 18953-18962.
[11] CHEN Chen, CHEN Zhe, ZHANG Jing, et al. SASA: semantics-augmented set abstraction for point-based 3D object detection[C]//2022 AAAI Conference on Artificial Intelligence. Vancouver: IEEE, 2022, 36(1): 221-229.
[12] GUO Yulan, WANG Hanyun, HU Qingyong, et al. Deep learning for 3D point clouds: a survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 43(12): 4338–4364.
[13] XIAO Aoran, HUANG Jiaxing, GUAN Dayan, et al. Unsupervised point cloud representation learning with deep neural networks: a survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2023, 45(9): 11321–11339.
[14] ZHOU Yin, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4490-4499.
[15] YAN Yan, MAO Yuxing, LI Bo. Second: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[16] DENG Jiajun, SHI Shaoshuai, LI Peiwei, et al. Voxel R-CNN: towards high performance voxel-based 3D object detection[C]//2021 AAAI Conference on Artificial Intelligence. [S.l.]: IEEE, 2021, 35(2): 1201-1209.
[17] LANG A H, VORA S, CAESAR H, et al. Pointpillars: fast encoders for object detection from point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 12697-12705.
[18] SHI Guangsheng, LI Ruifeng, MA Chao. Pillarnet: real-time and high-performance pillar-based 3D object detection[C]//2022 European Conference on Computer Vision. Tel Aviv: Springer, 2022: 35-52.
[19] WANG Yue, FATHI A, KUNDU A, et al. Pillar-based object detection for autonomous driving[C]//2020 European Conference on Computer Vision. Glasgow: Springer, 2020: 18-34.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 6000–6010.
[21] MAO Jiageng, XUE Yujing, NIU Minzhe, et al. Voxel transformer for 3D object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3164-3173.
[22] SHENG Hualian, CAI Sijia, LIU Yuan, et al. Improving 3D object detection with channel-wise transformer[C]// 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 2743-2752.
[23] 吴军, 崔玥, 赵雪梅, 等. SSA-PointNet++: 空间自注意力机制下的3D点云语义分割网络[J]. 计算机辅助设计与图形学学报, 2022, 34(3): 437–448
WU Jun, CUI Yue, ZHAO Xuemei, et al. SSA-Point Net++: a space self-attention CNN for the semantic segmentation of 3D point cloud[J]. Journal of computer-aided design & computer graphics, 2022, 34(3): 437–448
[24] GUO Menghao, XU Tianxing, LIU Jiangjiang, et al. Attention mechanisms in computer vision: a survey[J]. Computational visual media, 2022, 8(3): 331–368.
[25] LU Dening, XIE Qian, WEI Mingqiang, et al. Transformers in 3D point clouds: a survey[EB/OL]. (2022-09-21) [2023-05-16]. https://www.arxiv.org/abs/2205.07417v2.
[26] GRAHAM B, ENGELCKE M, MAATEN L. 3D semantic segmentation with submanifold sparse convolutional networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 9224-9232.
[27] LIU Zhe, ZHAO Xin, HUANG Tengteng, et al. Tanet: robust 3D object detection from point clouds with triple attention[C]//2020 AAAI Conference on Artificial Intelligence. New York: IEEE, 2020, 34(7): 11677-11684.
[28] CHEN Chunfu, FAN Quanfu, PANDA R. Crossvit: cross-attention multi-scale vision transformer for image classification[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 357-366.
[29] LIU Zechen, WU Zizhang, TóTH R. Smoke: single-stage monocular 3D object detection via keypoint estimation[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 996-997.
[30] WU Hai, DENG Jinhao, WEN Chenglu, et al. CasA: a cascade attention network for 3-D object detection from LiDAR point clouds[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1–11.
[31] CAI Zhaowei, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 43(5): 1483–1498.
[32] LIN T, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2980-2988.
[33] HE Chenhang, ZENG Hui, HUANG Jianqiang, et al. Structure aware single-stage 3D object detection from pointcloud[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11873-11882.
[34] YU Chuanbo, LEI Jianjun, PENG Bo, et al. SIEV-Net: a structure-information enhanced voxel network for 3D object detection from LiDAR point clouds[J]. IEEE transactions on geoscience and remote sensing, 2022, 60: 1–11.
[35] CHEN Xiaozhi, MA Huimin, WAN Ji, et al. Multi-view 3D object detection network for autonomous driving[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1907-1915.
[36] WANG Qi, CHEN Jian, DENG Jianqiang, et al. 3D-CenterNet: 3D object detection network for point clouds with center estimation priority[J]. Pattern recognition, 2021, 115: 107884.
[37] ZHENG Wu, TANG Weiliang, CHEN Sijin, et al. CIA-SSD: confident IoU-aware single-stage object detector from point cloud[C]//2021 AAAI Conference on Artificial Intelligence. [S.l.]: IEEE, 2021, 35(4): 3555-3562.
[38] YE Maosheng, XU Shuangjie, CAO Tongyi. HvNet: hybrid voxel network for lidar based 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 1631-1640.
[39] QIAN Rui, LAI Xin, LI Xirong. BADet: boundary-aware 3D object detection from point clouds[J]. Pattern recognition, 2022, 125: 108524.
[40] SHI Shaoshuai, GUO Chaoxu, JIANG Li, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10529-10538.
[41] YANG Honghui, LIU Zili, WU Xiaopei, et al. Graph R-CNN: towards accurate 3D object detection with semantic-decorated local graph[C]//2022 European Conference on Computer Vision. Tel Aviv: Springer, 2022: 662-679.
[42] SHI Shaoshuai, WANG Zhe, SHI Jianping, et al. From points to parts: 3D object detection from point cloud with part-aware and part-aggregation network[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 43(8): 2647–2664.
[43] CHEN Yukang, LI Yanwei, ZHANG Xiangyu, et al. Focal sparse convolutional networks for 3D object detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 5428-5437.
[44] LI Jiale, DAI Hang, SHAO Ling, et al. From voxel to point: iou-guided 3D object detection for point cloud with voxel-to-point decoder[C]//2021 ACM International Conference on Multimedia. New York: ACM, 2021: 4622-4631.
相似文献/References:
[1]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[2]王星,赵海良,王志刚.基于邻域系统的智能车辆最优轨迹规划方法[J].智能系统学报,2019,14(5):1040.[doi:10.11992/tis.201805004]
 WANG Xing,ZHAO Hailiang,WANG Zhigang.Optimal trajectory planning method of intelligent vehicles based on neighborhood system[J].CAAI Transactions on Intelligent Systems,2019,14():1040.[doi:10.11992/tis.201805004]
[3]张新钰,邹镇洪,李志伟,等.面向自动驾驶目标检测的深度多模态融合技术[J].智能系统学报,2020,15(4):758.[doi:10.11992/tis.202002010]
 ZHANG Xinyu,ZOU Zhenhong,LI Zhiwei,et al.Deep multi-modal fusion in object detection for autonomous driving[J].CAAI Transactions on Intelligent Systems,2020,15():758.[doi:10.11992/tis.202002010]
[4]陆军,李杨,鲁林超.远距离和遮挡下三维目标检测算法研究[J].智能系统学报,2024,19(2):259.[doi:10.11992/tis.202301001]
 LU Jun,LI Yang,LU Linchao.Long-distance and occluded 3D target detection algorithm[J].CAAI Transactions on Intelligent Systems,2024,19():259.[doi:10.11992/tis.202301001]
[5]唐友名,孙冠豫,孙贵斌,等.基于城市超车工况的智能车辆避障规划方法研究[J].智能系统学报,2024,19(3):619.[doi:10.11992/tis.202209060]
 TANG Youming,SUN Guanyu,SUN Guibin,et al.Autonomous vehicle trajectory planning based on urban overtaking conditions[J].CAAI Transactions on Intelligent Systems,2024,19():619.[doi:10.11992/tis.202209060]
[6]胡丹丹,张忠婷.基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法[J].智能系统学报,2024,19(3):653.[doi:10.11992/tis.202206034]
 HU Dandan,ZHANG Zhongting.Road target detection algorithm for autonomous driving scenarios based on improved YOLOv5s[J].CAAI Transactions on Intelligent Systems,2024,19():653.[doi:10.11992/tis.202206034]

备注/Memo

收稿日期:2023-05-16。
基金项目:河北省重点研发计划项目(20310103D);河北省在读研究生创新能力培养资助项目(CXZZBS2023153).
作者简介:鲁斌,教授,博士,博士生导师,CCF高级会员,主要研究方向为智能计算与计算机视觉、综合能源系统与大数据分析。E-mail:lubin@ncepu.edu.cn;杨振宇,博士研究生,主要研究方向为机器学习、计算机视觉。E-mail:yangzhenyu536@163.com;孙洋,博士研究生,主要研究方向为机器学习、计算机视觉。E-mail:bless2016@163.com
通讯作者:鲁斌. E-mail:lubin@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com