[1]范航舟,梅红岩,赵勤,等.融合双注意力机制的GNN多维时间序列预测[J].智能系统学报,2024,19(5):1277-1286.[doi:10.11992/tis.202305020]
FAN Hangzhou,MEI Hongyan,ZHAO Qin,et al.Multivariate time series forecasting with a graph neural network and dual attention mechanism[J].CAAI Transactions on Intelligent Systems,2024,19(5):1277-1286.[doi:10.11992/tis.202305020]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第5期
页码:
1277-1286
栏目:
学术论文—人工智能基础
出版日期:
2024-09-05
- Title:
-
Multivariate time series forecasting with a graph neural network and dual attention mechanism
- 作者:
-
范航舟, 梅红岩, 赵勤, 张兴, 程耐
-
辽宁工业大学 电子与信息工程学院, 辽宁 锦州 121000
- Author(s):
-
FAN Hangzhou, MEI Hongyan, ZHAO Qin, ZHANG Xing, CHENG Nai
-
School of Electronics & Information Engineering, Liaoning University of Technology, Jinzhou 121000, China
-
- 关键词:
-
多维时序预测; 图神经网络; 注意力机制; 特征融合; 时间卷积网络; 深度学习; 卷积神经网络; 时空特征
- Keywords:
-
multivariate time series forecasting; graph neural network; attention mechanism; feature fusion; temporal convolutional network; deep learning; convolutional neural network; spatiotemporal features
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202305020
- 文献标志码:
-
2024-08-28
- 摘要:
-
针对现有多维时间序列数据(multivariate time series, MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism based GNN, FFDA-GNN)。该模型将图神经网络与空间注意力机制融合,用于增强多变量之间依赖关系捕获能力;利用并行的多层膨胀卷积和通道注意力机制,对时间序列数据进行多通道的特征提取,实现对时间序列数据多通道信息的充分利用,从而提升预测性能。在经济、电力、交通3个领域数据集上与基准模型进行对比实验,该模型预测精度优于其他基准方法,有良好的可行性。
- Abstract:
-
To address the issues of insufficient capture of dependency relationships between variables and inadequate utilization of multichannel temporal information in multivariate time series, a forecasting model fused with a dual attention mechanism (FFDA-GNN) is proposed. This model integrates a graph neural network with a spatial attention mechanism to enhance the capture of dependencies among multiple variables. Additionally, parallel multilayer inflation convolution and channel attention mechanisms are used for multi-channel feature extraction from temporal data. This approach fully utilizes multi-channel information and enhances forecasting performance. Comparative experiments conducted on datasets from the fields of economics, electric power, and traffic show that the proposed model achieves better prediction accuracy than other benchmark methods and demonstrates superior feasibility.
备注/Memo
收稿日期:2023-5-20。
基金项目:辽宁省教育厅科学研究项目(JZL202015404,LJKZ0625,JYTMS20230869).
作者简介:范航舟,硕士研究生,主要研究方向为时序序列预测、大数据分析、深度学习。E-mail:fanhangzhou@163.com;梅红岩,教授,博士,中国计算机学会会员,主要研究方向为深度学习、数据挖掘与大数据分析、网络服务。发表学术论文40余篇。E-mail:715014795@qq.com;赵勤,硕士研究生,主要研究方向为时序序列预测、深度学习。E-mail:1139574265@qq.com。
通讯作者:梅红岩. E-mail:715014795@qq.com
更新日期/Last Update:
2024-09-05