[1]莫宏伟,孙琪,孙鹏,等.乳腺钼靶肿块自监督预训练迁移检测方法研究[J].智能系统学报,2024,19(5):1082-1091.[doi:10.11992/tis.202304032]
 MO Hongwei,SUN Qi,SUN Peng,et al.Self-supervised pretraining detection of mammographic mass targets in breast[J].CAAI Transactions on Intelligent Systems,2024,19(5):1082-1091.[doi:10.11992/tis.202304032]
点击复制

乳腺钼靶肿块自监督预训练迁移检测方法研究

参考文献/References:
[1] 文帅, 李华兵. 放射学及放射组学在骨质疏松症的研究进展[J]. 中国CT和MRI杂志, 2023, 21(9): 181-183.
WEN Shuai, LI Huabing. Research progress of radiology and radiomics in osteoporosis[J]. Chinese journal of CT and MRI, 2023, 21(9): 181-183.
[2] 刘姣. 放射学检查方法在肿瘤诊断中的研究进展[J]. 中国医药指南, 2023, 21(7): 67-69.
LIU Jiao. Research progress of radiological examination methods in tumor diagnosis[J]. Guide of China medicine, 2023, 21(7): 67-69.
[3] 张政. 人工智能在皮肤病诊断中的应用[J]. 中国新通信, 2020, 22(24): 118-119.
ZHANG Zheng. Application of artificial intelligence in the diagnosis of dermatosis[J]. China new telecommunications, 2020, 22(24): 118-119.
[4] 于鹤, 赵稳兴. 计算机辅助诊断技术在病理学中的应用进展[J]. 诊断病理学杂志, 2018, 25(3): 223-226.
YU He, ZHAO Wenxing. Application progress of computer-aided diagnosis technology in pathology[J]. Chinese journal of diagnostic pathology, 2018, 25(3): 223-226.
[5] 徐立芳, 傅智杰, 莫宏伟. 基于改进的YOLOv3算法的乳腺超声肿瘤识别[J]. 智能系统学报, 2021, 16(1): 21-29.
XU Lifang, FU Zhijie, MO Hongwei. Tumor recognition in breast ultrasound images based on an improved YOLOv3 algorithm[J]. CAAI transactions on intelligent systems, 2021, 16(1): 21-29.
[6] DHUNGEL N, CARNEIRO G, BRADLEY A P. The automated learning of deep features for breast mass classification from mammograms[C]//Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2016: 106-114.
[7] KRITI, VIRMANI J, DEY N, et al. PCA-PNN and PCA-SVM based CAD systems for breast density classification[M]//Intelligent Systems Reference Library. Cham: Springer, 2015: 159-180.
[8] KETABI H, EKHLASI A, AHMADI H. A computer-aided approach for automatic detection of breast masses in digital mammogram via spectral clustering and support vector machine[J]. Physical and engineering sciences in medicine, 2021, 44(1): 277-290.
[9] SANNASI CHAKRAVARTHY S R, RAJAGURU H. Automatic detection and classification of mammograms using improved extreme learning machine with deep learning[J]. Innovation and research in biomedical engineering, 2022, 43(1): 49-61.
[10] GNANASEKARAN V S, JOYPAUL S, MEENAKSHI SUNDARAM P, et al. Deep learning algorithm for breast masses classification in mammograms[J]. IET image processing, 2020, 14(12): 2860-2868.
[11] AL-MASNI M A, AL-ANTARI M A, PARK J M, et al. Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system[J]. Computer methods and programs in biomedicine, 2018, 157: 85-94.
[12] 韩昌芝, 俞璐, 李林, 等. 无源无监督迁移学习综述[J]. 信息技术与信息化, 2023(12): 46-51.
HAN Changzhi, YU Lu, LI Lin, et al. A summary of passive unsupervised transfer learning[J]. Information technology and informatization, 2023(12): 46-51.
[13] 邓佳丽, 龚海刚, 刘明. 基于目标检测的医学影像分割算法[J]. 电子科技大学学报, 2023, 52(2): 254-262.
DENG Jiali, GONG Haigang, LIU Ming. Medical image segmentation based on object detection[J]. Journal of university of electronic science and technology of China, 2023, 52(2): 254-262.
[14] WANG W C, AHN E, FENG Dagan, et al. A review of predictive and contrastive self-supervised learning for medical images[J]. Machine intelligence research, 2023, 20(4): 483-513.
[15] TSCHANNEN M, DJOLONGA J, RUBENSTEIN P K, et al. On mutual information maximization for representation learning[EB/OL]. (2019-07-31)[2023-04-15]. http://arxiv.org/abs/1907.13625.
[16] HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual infor-mation estimation and maximization[EB/OL]. (2018-08-20)[2023-04-15]. http://arxiv.org/abs/1808.06670.
[17] TIAN Yonglong, KRISHNAN D, ISOLA P. Contrastive multiview coding[C]//European Conference on Computer Vision. Cham: Springer, 2020: 776-794.
[18] AGRAWAL P, CARREIRA J, MALIK J. Learning to see by moving[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 37-45.
[19] CHEN Xinlei, HE Kaiming. Exploring simple Siamese representation learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 15745-15753.
[20] CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning. Vienna: PMLR, 2020: 1597-1607.
[21] HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 9726-9735.
[22] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent: a new approach to self-supervised Learning[EB/OL]. (2020-06-13)[2023-04-15]. http://arxiv.org/abs/2006.07733.
[23] CHEN Xinlei, FAN Haoqi, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[EB/OL]. (2020-03-09)[2023-04-15]. http://arxiv.org/abs/2003.04297.
[24] WANG C, CHAN S C. A new hand gesture recognition algorithm based on joint color-depth Superpixel Earth Mover’s Distance[C]//2014 4th International Workshop on Cognitive Information Processing. Copenhagen: IEEE, 2014: 1-6.
[25] NIKOLENTZOS G, MELADIANOS P, VAZIRGIANNIS M. Matching node embeddings for graph similarity[C]//Proceedings of the AAAI Conference on Artificial Intelligence. San Francisco: AAAI. 2017: 2429-2435.
[26] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[27] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[28] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635.
[29] HEATH M, BOWYER K, KOPANS D, et al. The digital database for screening mammography[M]. Nijmegen: Springer, 2001: 212–218.
[30] HEATH M, BOWYER K, KOPANS D, et al. Current status of the digital database for screening mammography[M]. Dordrecht: Springer, 1998: 457-460.
[31] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[32] FEI-FEI L, DENG J, LI K. ImageNet: Constructing a large-scale image database[J]. Journal of vision, 2010, 9(8): 1037.
[33] GRILL J B , STRUB F , ALTCHé F, et al. Bootstrap your own latent: a new approach to self-supervised learning[EB/OL]. (2020-06-13)[2023-04-15]. https://arxiv.org/abs/2006.07733.
相似文献/References:
[1]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(1):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7():61.
[2]韩峥,刘华平,黄文炳,等.基于Kinect的机械臂目标抓取[J].智能系统学报,2013,8(2):149.[doi:10.3969/j.issn.1673-4785.201212038]
 HAN Zheng,LIU Huaping,HUANG Wenbing,et al.Kinect-based object grasping by manipulator[J].CAAI Transactions on Intelligent Systems,2013,8():149.[doi:10.3969/j.issn.1673-4785.201212038]
[3]韩延彬,郭晓鹏,魏延文,等.RGB和HSI颜色空间的一种改进的阴影消除算法[J].智能系统学报,2015,10(5):769.[doi:10.11992/tis.201410010]
 HAN Yanbin,GUO Xiaopeng,WEI Yanwen,et al.An improved shadow removal algorithm based on RGB and HSI color spaces[J].CAAI Transactions on Intelligent Systems,2015,10():769.[doi:10.11992/tis.201410010]
[4]曾宪华,易荣辉,何姗姗.流形排序的交互式图像分割[J].智能系统学报,2016,11(1):117.[doi:10.11992/tis.201505037]
 ZENG Xianhua,YI Ronghui,HE Shanshan.Interactive image segmentation based on manifold ranking[J].CAAI Transactions on Intelligent Systems,2016,11():117.[doi:10.11992/tis.201505037]
[5]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]
[6]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[7]宁欣,李卫军,田伟娟,等.一种自适应模板更新的判别式KCF跟踪方法[J].智能系统学报,2019,14(1):121.[doi:10.11992/tis.201806038]
 NING Xin,LI Weijun,TIAN Weijuan,et al.Adaptive template update of discriminant KCF for visual tracking[J].CAAI Transactions on Intelligent Systems,2019,14():121.[doi:10.11992/tis.201806038]
[8]伍鹏瑛,张建明,彭建,等.多层卷积特征的真实场景下行人检测研究[J].智能系统学报,2019,14(2):306.[doi:10.11992/tis.201710019]
 WU Pengying,ZHANG Jianming,PENG Jian,et al.Research on pedestrian detection based on multi-layer convolution feature in real scene[J].CAAI Transactions on Intelligent Systems,2019,14():306.[doi:10.11992/tis.201710019]
[9]刘召,张黎明,耿美晓,等.基于改进的Faster R-CNN高压线缆目标检测方法[J].智能系统学报,2019,14(4):627.[doi:10.11992/tis.201905026]
 LIU Zhao,ZHANG Liming,GENG Meixiao,et al.Object detection of high-voltage cable based on improved Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2019,14():627.[doi:10.11992/tis.201905026]
[10]单义,杨金福,武随烁,等.基于跳跃连接金字塔模型的小目标检测[J].智能系统学报,2019,14(6):1144.[doi:10.11992/tis.201905041]
 SHAN Yi,YANG Jinfu,WU Suishuo,et al.Skip feature pyramid network with a global receptive field for small object detection[J].CAAI Transactions on Intelligent Systems,2019,14():1144.[doi:10.11992/tis.201905041]

备注/Memo

收稿日期:2023-4-15。
作者简介:莫宏伟,教授,博士生导师,主要研究方向为类脑计算与人工智能、机器视觉与机器认知、人机混合智能。主持省部级科研项目24项,授权发明专利10项,发表学术论文80余篇。E-mail:honwei2004@126.com;孙琪,硕士研究生,主要研究方向为深度学习、计算机视觉、医学影像。E-mail:962287826@qq.com;孙鹏,硕士研究生,主要研究方向为深度学习、计算机视觉、医学影像。E-mail:1940737851@qq.com。
通讯作者:莫宏伟. E-mail:honwei2004@126.com

更新日期/Last Update: 2024-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com